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a b s t r a c t 

Integrating the costs and benefits of collective behaviors is a fundamental challenge to understanding the 

evolution of group living. These costs and benefits can rarely be quantified simultaneously due to the 

complexity of the interactions within the group, or even compared to each other because of the absence 

of common metrics between them. The construction of ‘living bridges’ by New World army ants – which 

they use to shorten their foraging trails – is a unique example of a collective behavior where costs and 

benefits have been experimentally measured and related to each other. As a result, it is possible to make 

quantitative predictions about when and how the behavior will be observed. In this paper, we extend 

a previous mathematical model of these costs and benefits to much broader domain of applicability. 

Specifically, we exhibit a procedure for analyzing the optimal formation, and final configuration, of army 

ant living bridges given a means to express the geometrical configuration of foraging path obstructions. 

Using this procedure, we provide experimentally testable predictions of the final bridge position, as well 

as the optimal formation process for certain cases, for a wide range of scenarios, which more closely 

resemble common terrain obstacles that ants encounter in nature. As such, our framework offers a rare 

benchmark for determining the evolutionary pressures governing the evolution of a naturally occurring 

collective animal behavior. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction and background 

Over the past four decades, studies have revealed the func-

tional consequences of collective animal behaviors, which are of-

ten driven by interactions between individuals with little or no

global knowledge ( Camazine et al., 2001; Couzin, 2009; Couzin and

Krause, 2003; Garnier et al., 2007; Sumpter, 2010 ). The cohesive

movement of bird flocks and fish schools, some of the most visu-

ally striking examples of how animal groups can dynamically self-

organize, can allow for improved migration accuracy ( Guttal and

Couzin, 2010 ), predator avoidance ( Wolf et al., 2013 ), and resource

finding ( Couzin et al., 2005 ). However, collective behavior also

operates at less conspicuous, but equally functionally important,

scales in order to generate division of labor ( Duarte et al., 2011 ),

pattern formation ( Detrain and Deneubourg, 2006; Theraulaz et al.,

2002 ), or physical construction ( Buhl et al., 2005; King et al., 2015 )

across many animal taxa. 
∗ Corresponding author. 
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One of the principal challenges in studying collective behav-

or is simultaneously quantifying both the benefits and costs as-

ociated with group living in order to understand the overall

elective pressure on the behavior and hence its evolution. In

ome cases, the benefits, such as the improvements in navigation

 Berdahl et al., 2013 ), or the costs, such as an increase in the risk of

isease ( Cross et al., 2010 ), have been measured in isolation. How-

ver, since the proximate currencies of fitness related to benefits

nd costs can be very different ( e.g. , navigation direction and dis-

ase risk), and operate at different spatial or temporal scales, it is

ften difficult to measure both benefits and costs simultaneously in

rder to estimate the ultimate fitness consequences of group living.

The construction of living bridges by the army ant Eciton hama-

um is a unique example of a collective behavior that is amenable

o measurements of both costs and benefits ( Reid et al., 2015 ).

herefore, it allows for quantitative predictions about when and

ow the behavior will be observed. Found in the tropical forests

f Central and South America, army ants are nomadic, moving

heir entire colony (sometimes exceeding a million individuals) to

 new location each day in search of new sources of food while the

olony has developing young ( Rettenmeyer, 1963; Schneirla, 1945;

972 ). As a consequence of this nomadic lifestyle, these ants –

https://doi.org/10.1016/j.jtbi.2017.09.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.09.017&domain=pdf
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Fig. 1. (a) Field apparatus used in Reid et al. (2015) to experimentally manipulate 

living bridges built by colonies of army ant Eciton hamatum . (b) Schematic represen- 

tation of the experimental apparatus introduced into a foraging trail of army ants in 

Reid et al. (2015) . The introduction of such an apparatus has the effect of adding an 

additional length L A to the distance ( L T ) foraging ants must travel. In order to short- 

cut this additional distance, army ants construct a living bridge that initially forms 

at an apex of angle θ , and moves down toward the main trail axis until reaching 

some optimal position. Here w A is the width of an apparatus arm. 
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nlike most other ants – face severe time constraints when gen-

rating new foraging routes each day. While ants living in a

ermanent nest site can thoroughly explore their environment

 Deneubourg et al., 1990; Devigne and Detrain, 2002 ) or clear

rails of vegetation ( Bochynek et al., 2016; Bruce and Burd, 2012;

oward, 2001; Kost et al., 2005 ) in order to create relatively

traight and efficient foraging paths, army ant trails often weave

ortuously through the complex tropical forest floor ( Schneirla,

972; Solé et al., 20 0 0 ). 

In order to improve the efficiency of their trails, army ants are

apable of linking their own bodies together to dynamically create

hysical structures along the foraging path ( Anderson et al., 2002;

arnier et al., 2013; Reid et al., 2015; Rettenmeyer, 1963; Schneirla,

972 ). These structures may be used to widen paths to increase

he flux of ants, or to form bridges over gaps in the terrain (reach-

ng spans of over 12 cm, or approximately 12 ant body lengths)

o decrease the tortuosity of their trails ( Powell and Franks, 2007;

eid et al., 2015 ). Moreover, Powell and Franks (2007) showed that

hese structures allow prey-laden ants to move at maximum speed

n the trail, as if they were walking on a flat surface. Ants modu-

ate their bridge-building behavior in response to local information,

llowing these bridges to adapt to current traffic conditions, re-

over from damage, and dissemble when underused ( Garnier et al.,

013 ), so that they exist as needed at particular points along the

rail. 

While the living bridges can increase the flow of ants and re-

ources along trails, they also impose a cost on the colony. The ants

orming the bridges are locked into the structure, sometimes for

everal minutes at a time ( Garnier et al., 2013 ), preventing them

rom participating in other foraging activities such as capturing

nd killing prey or transporting food items along the trail. Under-

tanding the overall effect of these living structures on the colony’s

oraging rate requires a quantification of both the benefit (shorten-

ng the travel distance) and cost (removing ants from the foraging

ool) of each structure, and converting these to the common cur-

ency of overall foraging rate. 

In a recent study, Reid et al. (2015) experimentally manipulated

iving bridges built by colonies of E. hamatum and measured these

enefits and costs. The researchers inserted deviations into existing

oraging trails ( Fig. 1 ) and recorded the formation of bridges on the

xperimental apparatus. They showed that bridges initiated at the

end of the deviation but over time grew and moved away from

he initiation point to increasingly shortcut the deviation ( Fig. 2 ).

owever, the final, steady state, position of the bridges tended to

ot fully minimize the trail length. Instead, the distance that the

ridge traveled, and hence the benefit (trail shortening) derived

rom the living bridge, depended on the angle of the apparatus de-

iation ( Reid et al., 2015 ). To measure the cost of the bridge to the

olony, Reid et al. (2015) estimated the number of ants required

o maintain a bridge of a certain length by measuring the surface

rea of the bridge (which is an appropriate approximation because

ridges consist of a monolayer of ants). Crucially, the bridges were

bserved to widen as they lengthened, so that while the travel dis-

ance saved increased linearly with bridge length, the number of

nts diverted from the foraging pool increased quadratically with

ridge length. 

The researchers converted the change in travel distance and the

hange in the number of available foraging ants caused by the con-

truction of a bridge into an overall change in the local density

f foraging ants on the trail. This served as a proxy for the trail

oraging rate and provided a common currency with which to di-

ectly compare the costs and benefits of a given living bridge. We

ote that this assumes that army ants do not recruit workers at

he bivouac to compensate for ants locked in the bridge struc-

ure. However, this assumption is reasonable since such density-

riven recruitment would not be trivial to achieve for the ants. An
 p  
rmy ant trail can sometimes reach several hundred meters and

ensity can vary enormously along the trail based on the local

onditions ( e.g. because of terrain configuration). Individual ants

ould therefore have to integrate density information over a long

nough portion of the trail before making the decision to walk

ack a sometime long distance toward the bivouac (a time dur-

ng which density on the trail might change). Maximizing the trail

oraging rate (density of foraging ants) as a function of bridge po-

ition led to a unique, non-trivial, optimal position, which the re-

earchers showed could be matched closely to the empirically ob-

erved bridge positions ( Reid et al., 2015 ). 

Here, we propose to broaden the domain of applicability of the

athematical model introduced by Reid et al. (2015) . We do so by

emonstrating a procedure that can be applied to make predictions

egarding both the growth trajectory, as well as the final stable po-

ition, of living bridges for a much wider range of geometrical sce-

arios along a trail. We first recapitulate quantitatively the costs

nd benefits of living bridges and describe the procedure for iden-

ifying the growth and final configuration of the bridge (or bridges)

hat is predicted to maximize foraging rate. Then, we apply this

rocess to scenarios with asymmetric obstacles and with multi-



186 J.M. Graham et al. / Journal of Theoretical Biology 435 (2017) 184–198 

Fig. 2. Field apparatus used in Reid et al. (2015) to experimentally manipulate living bridges built by colonies of army ant Eciton hamatum . This figure shows the formation 

of a living bridge together with an illustration of the cost-benefit relationship studied in Reid et al. (2015) . 
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ple consecutive obstacles, which we argue represent the building

blocks necessary for modeling most scenarios that army ants en-

counter in nature. 

These predictions, as well as others that can be generated with

our framework, can be used to further test empirically the hypoth-

esis that army ant living bridges serve to maximize foraging rate

along trails. The predictions include the number of bridges, their

position relative to the apparatus (or natural obstacle) and to other

bridges, and their angle relative to the main foraging trail, which

can be directly measured in field experiments. In addition to lend-

ing themselves to hypothesis testing, the scenarios considered here

resemble more closely obstacles that are typically encountered by

army ants, potentially allowing for a more complete understanding

of bridge building dynamics by army ants in nature. 

2. Methods 

2.1. Cost-benefit framework 

As in Reid et al. (2015) , we consider a foraging trail of total

length L T and N army ants. If an experimental apparatus (or nat-

ural obstacle) is introduced to the trail, then this adds an addi-

tional length of L A to the distance over which the ants must travel

( Fig. 1 ). Thus, in the absence of any bridges the overall foraging

density of ants is 

Number of ants 

Total distance 
= 

N 

L T + L A 
. (1)

The magnitude of the length L A depends on the geometric con-

figuration of the apparatus as well as our assumption that ant trails

tend to follow the inner edge of the apparatus in order to min-

imize travel distance (see Reid et al., 2015 and below). The trail

length L T is fixed. We estimate the number of ants N by multi-

plying the mean empirically measured density of foraging ants by

L T + L A , as in Reid et al. (2015) . 

The presence of one (or more) bridges will modify both the

number of ants moving on the trail (since the bridges are com-

prised of ants) and the distance of travel, both of which will
odulate the traffic density on the trail. The number of available

oraging ants becomes N minus the number of ants sequestered in

he bridge structures n b , i.e. , 

 − n b . (2)

However, there are substantial functional differences between a

ypical bridge-building and non-bridge-building ( i.e. , foraging) ant.

nts that take up positions in bridges tend to be smaller and less

ffective at capturing and carrying prey items ( Powell and Franks,

0 05; 20 06 ). Therefore, if our unit of ants is assumed to be forag-

ng ants, then the cost of including a (smaller) ant into the bridge

tructure will actually be less than one foraging ant. In order to

ccount for these size and functional differences between bridge-

uilding and foraging ants, we introduce a free parameter α and

odify Eq. (2) to become 

 − n b 

α
, (3)

here we set α = 17 . 02 as in Reid et al. (2015) . The value of this

arameter may need to be refit when testing new ecological con-

itions, such as nighttime colony migrations, where the functional

ifferences between ants of different sizes may not be the same as

hen foraging. 

In the presence of bridges, we assume that the distance of

ravel for the foraging ants, f , is the shortest path through the

pparatus-bridge complex. Thus, the density function to be opti-

ized is 

= 

N − n b /α

f 
. (4)

ote that we choose here to conduct the optimization over the size

f the experimental apparatus, rather than the total trail length. In

eid et al. (2015) , it is estimated that there is between one and ten

ridges per meter of trail on a typical army ant trail (depending on

errain configuration and traffic intensity). This corresponds to an

verage of one bridge every 20–30 cm, which is approximately the

ength of the apparatus in Reid et al. (2015) . Therefore, conduct-

ng the optimization over the length of the apparatus should be
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Fig. 3. Schematic of a theoretical apparatus that is predicted to result in the construction of army ant living bridges that are not necessarily parallel to the main trail axis. 

The additional length of such an apparatus added to the path of travel is L A,S + L A,L . Here w A is the width of an apparatus arm. All other variables and parameters are 

described in Tables 1 and 2 . 
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I  
quivalent to conducting it over the total trail length. In addition,

ith around 10 ants sequestered in each bridge, and depending on

olony size, the Reid et al. (2015) estimate indicates that the total

umber of ants sequestered in bridges would occupy between 2

nd 20% of the total colony population. This is a significant cost for

he colony that is compensated by a significant increase in foraging

fficiency, which was estimated by Powell and Franks (2007) as an

p to 79% higher daily prey intake in comparison to a no-bridge

ituation. In order to maximize the density of foraging ants for a

articular geometric configuration of apparatuses (or obstacles in

ature), all that is left is to describe how the number of ants in

he bridge n b and trail length f vary with bridge position. 

.2. Procedure for predicting optimal bridges 

.2.1. Finding the globally optimal bridge configuration 

The configuration of a bridge is described exactly by where its

wo ends attach to the apparatus. Because the ends of the bridges

ust connect to the experimental apparatus (or some other phys-

cal substrate), the apparatus constrains the range of possible con-

gurations that a bridge can have. For apparatuses (or other ob-

tacles), a bridge end can attach anywhere from the apex of the

eviation to the end of the apparatus arm (or obstacle). If we de-

ote the apex as distance 0 and the ends of the two apparatus

rms as D max, 1 and D max, 2 , then the possible configurations of the

ridge are contained within the rectangle [0, D max, 1 ] × [0, D max, 2 ].

or scenarios with multiple deviations, we assume that one bridge

an form for each apex present, so for a scenario with A apexes, we

earch within the 2 A dimensional hyperrectangle to locate the op-

imal bridge configuration. we carried out this optimization via nu-

erical routines using the R package DEoptim ( Ardia et al., 2011a;

011b; 2015; Mullen et al., 2011; Price et al., 2006 ). 

For each possible configuration of bridges, we need to be able

o calculate the number of ants sequestered and the distance

hat foraging ants have to traverse. For a given configuration, the

engths of the bridges can be directly calculated. Then, following

he results of Reid et al. (2015) , we assume that the width of a

ridge increases linearly as the bridge get longer. With this as-

umption, the surface area of a bridge can be computed for any

ridge configuration, and the number of ants comprising a bridge

stimated by further assuming each ant has a typical length and

idth. 
To calculate the distance that foraging ants have to traverse

iven a certain configuration of bridges, we assume that ants make

he following journey: starting from the main foraging trail, they

ravel up the inner edge of the first apparatus arm until the first

ridge is encountered, cross the first bridge along the middle,

ravel along the second apparatus arm from the first bridge to the

econd bridge, cross the second bridge, and so on until the end of

he apparatus has been reached. In short, we assume that ants take

he shortest possible path through the apparatus-bridge complex. 

.2.2. Finding the optimal growth trajectory 

If there is a selective pressure on the final bridge position to

aximize the foraging rate, then there should also be pressure

o maximize foraging rate during the bridge construction process.

ith this assumption, we can predict the growth trajectory that a

ridge takes to reach the final configuration. 

To do so, we fix the total length of all bridges in the structure to

e a certain length. Then, we search this reduced space of possible

onfigurations and locate the configuration that maximizes forag-

ng rate for that bridge length. By setting the length to vary from

 to the sum of the final optimal lengths, we generate a trajectory

hat maximizes foraging rate throughout the building process. 

When there are multiple bridges within a structure, we reason

hat during the construction process, each bridge should be the

ame length for as long as possible. As described above, for ap-

aratuses with arms that are straight, the distance saved from a

ridge scales linearly with bridge length, while the number of ants

equestered scales quadratically. Therefore, for a fixed total bridge

ength, it is optimal for each bridge to be the same length. With

his argument, we predict that each bridge will grow at the same

ate, until a bridge reaches its optimal position, when it will stop

rowing while the other bridges continue to grow. 

.2.3. Further generalizations 

In this framework, we assume that the apparatus (or natural

bstacle) consists of a series of straight paths. If this is not the case

 i.e., the arms are curved), then some of the assumptions that we

ade may not hold. For example, it is possible in such scenarios

hat while growing from an apex, a bridge may get stuck at a lo-

al maximum before reaching the globally optimal configuration. A

lightly modified procedure would be necessary if generating pre-

ictions for these kinds of obstacles. 

However, we argue that such scenarios will be rare in nature.

n the tropical forest floor, the physical substrate on which bridges
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are built will typically be fallen tree branches, which are rela-

tively straight, especially at the spatial scale of army ant bridges

(1–10 cm). Obstacles usually consist of overlapping branches, so

that the scenarios that we have solved here, including asymmet-

ric obstacles and multiple consecutive obstacles, should form the

basic building blocks of the majority of obstacles that army ants

encounter in nature. These building blocks can be combined, for

example to create multiple asymmetric obstacles, to create increas-

ingly complex challenges. 

2.3. Asymmetric scenario 

2.3.1. Optimal bridge position 

We generalize the model described in Reid et al. (2015) by al-

lowing for a difference in the orientations of the two arms of the

apparatus relative to the main trail axis, as well as a difference be-

tween the lengths of each arm of the apparatus ( Fig. 3 ). 

Let θ and φ be the angles that the shorter and longer arms

(the left and right arms in Fig. 3 ) respectively make relative to the

line perpendicular to the main trail axis, and L 0, S and L 0, L be the

hinge-to-hinge distance along the shorter and longer arms of the

apparatus. Then, from purely geometric considerations, the inner

length of each arm from the apex of the apparatus to the uncon-

nected end of each arm is 

L A,S = L 0 ,S − w A 

2 

cot 

(
θ + φ

2 

)
, (5)

L A,L = L 0 ,L − w A 

2 

cot 

(
θ + φ

2 

)
, (6)

where w A is the width of the apparatus arm. Thus, the distance

along the apparatus that ants must travel when there is no bridge

is L A = L A,S + L A,L . 

The maximum possible vertical distance that each end of a

bridge could travel down the shorter and longer arm, before the

end of each respective arm is reached, is 

D max ,S = L A,S cos (θ ) , (7)

D max ,L = L A,L cos (φ) . (8)

If the ends of a particular bridge travel down the shorter and

longer arms of the apparatus a vertical distance of d S and d L , re-

spectively, then according to the law of cosines, the length of the

bridge will be 

b 2 = 

(
L A,S 

D max ,S 

d S 

)2 

+ 

(
L A,L 

D max ,L 

d L 

)2 

− 2 d S d L 
L A,S L A,L cos (θ + φ) 

D max ,S D max ,L 

, 

(9)

(all parameters and variables used in this model are listed and de-

scribed in Tables 1 and 2 ). The total distance of travel for foraging

ants through an apparatus with such a bridge is 

f = L T + L A + b − L A,S 

D max ,S 

d S − L A,L 

D max ,L 

d L , (10)

and we obtain our density function 

ρ = 

N − n b 
α

f 
, (11)

where the number of ants sequestered for the formation of a

bridge is 

n b = 

w �

(
1 − w � tan 

(
θ+ φ

2 

))
l w 

b 2 , (12)

n n 
here l n and w n represent the length and width of a typical se-

uestered bridge ant, and w � is ratio between the width and

ength of a living bridge. 

To locate the optimal bridge position, we maximize foraging ant

ensity as a function of the bridge end positions d S and d L , for

iven values of apparatus angles θ and φ. 

.3.2. Optimal bridge formation process 

Let b f represent the bridge length parameter, which is to be var-

ed from 0 to the final optimal length. When b f is fixed, through

qs. (9) –(11) we arrive at a constrained optimization problem. That

s, we seek to optimize the density 

= 

N − n b f 
α

f 
, (13)

ubject to the constraint 

 

2 
f = 

(
L A,S 

D max ,S 

d S 

)2 

+ 

(
L A,L 

D max ,L 

d L 

)2 

− 2 d S d L 
L A,S L A,L cos (θ + φ) 

D max ,S D max ,L 

, 

(14)

here 

f = L T + L A + b f −
L A,S 

D max ,S 

d S − L A,L 

D max ,L 

d L , (15)

nd 

 b f 
= 

w �

(
1 − w � tan 

(
θ+ φ

2 

))
l n w n 

b 2 f . (16)

e note that since b f is fixed, n b f and hence N −
n b f 
α are now held

onstant. The values for L A, S , L A, L , D max, S and D max, L are obtained

s before. 

In the appendix, we derive the values of d S and d L in the

ntervals [0, D max, S ] and [0, D max, L ] respectively that maximize

q. (13) subject to the constraint given by Eq. (14) . 

.4. Multiple obstacles scenario 

In this model, we consider multiple, symmetric, deviations from

he trail. We predict that this scenario may produce multiple

ridges that coordinate in a striking fashion, since the position of

ne bridge may constrain the possible positions of downstream

ridges. Figs. 4 and 5 illustrate apparatuses that could be expected

o lead to the formation of two and three bridges, respectively. 

For the two bridge case illustrated in Fig. 4 , let L 0 be the hinge-

o-hinge length along each of the three segments of the apparatus.

hen the inner distance from the apex to the end of each arm is 

 A 1 = L A 2 = L A 3 = L 0 − w A 

2 

cot 

(
θ

2 

)
, (17)

o L A = L A 1 + L A 2 + L A 3 = 3 L A 1 , and the maximum vertical distance

ach bridge can travel is 

 max = 

L A 
3 

cos 

(
θ

2 

)
. (18)

Then, our density function will take the form 

= 

N − n b 1 
α − n b 2 

α

f 
, (19)

here the number of ants sequestered in each bridge is 

 b i 
= 

w θ

(
1 − w θ tan 

(
θ
2 

))
l n w n 

b 2 i , i = 1 , 2 , (20)

nd the length of each bridge is 

 i = 2 d i tan 

(
θ

2 

)
, i = 1 , 2 . (21)
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Table 1 

Fixed parameters used in all models. 

Notation Description Value Units 

L T Trail length without bridges 100 cm 

l n Length of an average ant when occupying a position within the bridge structure 0.691 cm 

w n Width of an average ant when occupying a position within the bridge structure 0.107 cm 

w A Width of apparatus arm 3.3 cm 

α Free parameter to adjust the space occupied by an ant on the trail 17.02 

Table 2 

Geometric parameters and variables corresponding to asymmetric model representing an apparatus such as shown in Fig. 3 . 

Notation Description Value Units 

L S , 0 Hinge-to-hinge length of left apparatus arm 22 cm 

L L , 0 Hinge-to-hinge length of right apparatus arm 44 cm 

θ , φ Angle of left and right arm respectively from the vertical 0 to 45 degrees 

w � Ratio between width and length of a bridge, value from Reid et al. (2015) 4 . 799(θ + φ) −0 . 5014 N/A 

L A, S Travel length along left arm from apex to opposite hinge L S, 0 − w A 
2 

cot 
(

θ+ φ
2 

)
cm 

L A, L Travel length along right arm from apex to opposite hinge L L, 0 − w A 
2 

cot 
(

θ+ φ
2 

)
cm 

L A Sum of travel lengths along each arm L A,S + L A,L cm 

D max, 1 Maximum vertical distance from apex to bottom of left arm L A, S cos ( θ ) cm 

D max, 2 Maximum vertical distance from apex to bottom of right arm L A, L cos ( φ) cm 

d 1 Vertical distance of bridge from apex to position on left arm 0 to D max, 1 cm 

d 2 Vertical distance of bridge from apex to position on right arm 0 to D max, 2 cm 

Table 3 

Geometric parameters and variables corresponding to two-apex apparatus such as shown in Fig. 4 . 

Notation Description Value Units 

L 0 Hinge-to-hinge length of each arm 22 cm 

θ Angle of each apex 0 to 60 degrees 

w θ Ratio between width and length of a bridge, value from Reid et al. (2015) 4 . 799 θ−0 . 5014 N/A 

L A 1 , L A 2 , L A 3 Travel length along each arm of apparatus from apex to opposite hinge L 0 − w A 
2 

cot 
(

θ
2 

)
cm 

L A Sum of travel lengths along each arm L A 1 + L A 2 + L A 3 cm 

D max Maximum vertical distance from apex to end of each arm 

L A 
3 

cos 
(

θ
2 

)
cm 

d 1 Vertical distance of bridge from apex to position on arms forming first apex 0 to D max cm 

d 2 Vertical distance of bridge from apex to position on arms forming second apex 0 to D max cm 

T

(

w  
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b
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ρ

w
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∣∣∣∣∣
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he length of a trail on an apparatus with two bridges will be 

length of distance along arm 1 - savings from bridge 1) 

+ bridge 1 

+ distance along arm 2 between bridges + bridge 2 

+ (length of distance along arm 3 - savings from bridge 2) . 

(22) 

Thus, we have 

f = L T + 

(
1 − d 1 

D max 

)
L A 1 + 

(
1 − d 2 

D max 

)
L A 3 

+ 

∣∣∣∣∣
D max − d 1 

cos 
(

θ
2 

) − d 2 

cos 
(

θ
2 

)
∣∣∣∣∣ + b 1 + b 2 , (23) 

here all of the parameters are listed and described in

ables 1 and 3 . 

Putting the last four equations together gives a complete ex-

ression for the density as a function of the variables d 1 and d 2 ,

hich when optimized provides the best positioning of the two

ridges to maximize the density of foraging ants on the trail. 

A straightforward extension of the two bridge case leads to the

ollowing model for a situation such as illustrated in Fig. 5 , that

ay lead to the formation of three bridges. In this case we obtain
a  
= 

N − n b 1 
α − n b 2 

α − n b 3 
α

f 
, (24) 

ith 

f = L T + 

(
1 − d 1 

D max 

)
L A 1 + 

(
1 − d 3 

D max 

)
L A 4 

+ 

∣∣∣∣∣
D max − d 1 

cos 
(

θ
2 

) − d 2 

cos 
(

θ
2 

)
∣∣∣∣∣ + 

∣∣∣∣∣
D max − d 2 

cos 
(

θ
2 

) − d 3 

cos 
(

θ
2 

)
∣∣∣∣∣

+ b 1 + b 2 + b 3 , (25) 

nd with the bridge lengths and the number of ants sequestered

or bridge formation given by the same expressions as in the two

ridge case. 

A term of the form 

D max − d i 

cos 
(

θ
2 

) − d i +1 

cos 
(

θ
2 

)
∣∣∣∣∣ (26) 

uch as appears in Eqs. (23) and (25) is called the mid-distance

etween two consecutive bridges. The mid-distance measures the

inear distance between two consecutive bridges along a common

rm of an apparatus. The mid-distance serves as a convenient

uantity for measuring where two or more bridges form relative

o one another. In the results, we plot the mid-distance for opti-

al bridge position as a function of apex angle in order to visual-

ze that the optimal positioning of two or more bridges seems to

e coordinated in a particular manner. 

We note that each of the density functions ( Eqs. (11) , (19) ,

nd (24) ) is guaranteed to have a biologically relevant maximum
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Table 4 

Geometric parameters and variables corresponding to three-ape apparatus such as shown in Fig. 5 . 

Notation Description Value Units 

L 0 Hinge-to-hinge length of each arm 22 cm 

θ Angle of each apex 0 to 60 degrees 

w θ Ratio between width and length of a bridge, value from Reid et al. (2015) 4 . 799 θ−0 . 5014 N/A 

L A 1 , L A 2 , L A 3 , L A 4 Travel length along each arm of apparatus from apex to opposite hinge L 0 − w A 
2 

cot 
(

θ
2 

)
cm 

L A Sum of travel lengths along each arm L A 1 + L A 2 + L A 3 + L A 4 cm 

D max Maximum vertical distance from apex to end of each arm 

L A 
4 

cos 
(

θ
2 

)
cm 

d 1 Vertical distance of bridge from apex to position on arms forming first apex 0 to D max cm 

d 2 Vertical distance of bridge from apex to position on arms forming second apex 0 to D max cm 

d 3 Vertical distance of bridge from apex to position on arms forming third apex 0 to D max cm 

Fig. 4. Schematic of a theoretical apparatus that is predicted to result in the construction of two distinct army ant living bridges. The additional linear length of such 

an apparatus added to the path of travel is well-approximated by L A = L A 1 + L A 1 + L A 1 . Note that, due to symmetry L A 1 = L A 2 = L A 3 . All other variables and parameters are 

described in Tables 1 and 3 . 

Fig. 5. Schematic of a theoretical apparatus that is predicted to result in the construction of three distinct army ant living bridges. The additional linear length of such an 

apparatus added to the path of travel is well-approximated by L A = L A 1 + L A 2 + L A 3 + L A 4 . Note that, due to symmetry, L A 1 = L A 2 = L A 3 = L A 4 . All other variables and parameters 

are described in Tables 1 and 4 . 
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value since it is a continuous function maximized over a closed

and bounded set of possible distance values. However, unlike in

Reid et al. (2015) , the presence of square roots, e.g. , in (10) , and

absolute values, e.g. , in (25) , make the equations much less

tractable to solving analytically for exact expression for optimal

bridge-positioning. Additional discussion of this and some related

points are provided in the appendix. 
.5. Model parameters 

In order to solve these models, we choose parameter values

hat are either taken directly from Reid et al. (2015) , or cho-

en to be consistent with values from Reid et al. (2015) . Specif-

cally, for the lengths of the sides of a proposed apparatus, we

hoose parameter values that are on the order of the lengths of the
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Fig. 6. Quantitative (6(a) - 6(b)) and qualitative (6(c)) results described in Section 3.1 . These results show the predicted arrangement of optimal living bridge configurations 

for an asymmetric apparatus as a function of the angle φ with the angle θ fixed at 20 ° (6(a)) and 10 ° (6(b)) respectively. Eq. (61) implies that a living bridge forms at the 

apex of the apparatus and quickly establishes an angle with respect to the main trail axis that is completely determined by the ratio cos (θ ) 
cos (φ) 

. This angle with respect to the 

main trail remains constant as the living bridge moves down the apparatus to its equilibrium position, at least until the bridge “runs out of road” along one arm or the 

other. That is, for fixed θ and φ, the orientation of the living bridge only changes as the bridge moves down the apparatus if it reaches the bottom of the shorter side before 

establishing its equilibrium position. Computed for a foraging density of approximately 2.2. 
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2 Although a slight abuse of notation, throughout Section 3 we use d S , etc. to 

denote not variables, but the value of the distance variables that actually maximize 

the relevant density function ρ . 
xperimental apparatus from Reid et al. (2015) . The values for

ll parameters used to obtain the following results are listed in

ables 1 –4 . However, the theory does not depend on the explicit

alues of the geometric parameters. Therefore, our approach can

e adapted to the specific measurements of a different experimen-

al apparatus or naturally occurring obstacles. 

.6. Model code 

As part of supplementary material, we have developed

reely available code using the R programming language,

 Core Team (2016) , that can be used to implement the models

rom this paper or any similar models that one may derive. This

ackage can be found at https://goo.gl/zam27s . 

. Results and discussion 

.1. Asymmetric scenario 

In general, optimal bridges in asymmetric apparatuses are not

arallel to the main trail axis. Examples of optimal bridge posi-

ions are illustrated in Fig. 6 a and b. To obtain these results, we

xed one of the arm angles, θ , to be either 20 ° or 10 °, and varied

he other angle, φ, from 5 ° to 30 °. We then calculated the optimal
ridge position for each combination of angles as the maximiz-

ng distances, 2 d S and d L , that the two ends of the optimal bridge

ravel down each arm of the apparatus from the apex ( Fig. 3 ), and

lotted the difference between these two lengths. Here, a neg-

tive difference indicates that the optimal bridge travels further

own the arm associated with the angle φ (here, the longer arm),

hereas a positive difference indicates that the bridge travels fur-

her down the arm associated with the angle θ (the shorter arm). 

Typically, the optimal bridge travels further down the appara-

us arm with a smaller angle ( Fig. 6 a). This is shown by the differ-

nce in bridge end positions being negative when φ < θ and pos-

tive when φ > θ . Specifically, we find as derived in the appendix

hat 

 S = 

cos (θ ) 

cos (φ) 
d L . (27) 

This relationship implies that when the two angles φ and θ
re equal, the optimal bridge tends to be parallel to the main trail

xis. Therefore, the symmetric experimental apparatus studied in

https://goo.gl/zam27s
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Fig. 7. Fig. 7 a shows, as a function of angle θ , the greatest possible vertical distance a living bridge can travel along an apparatus, the distance values d 1 and d 2 that optimize 

the density function (19) and determine the optimal positioning of a living bridge, and the mid-distance between two bridges, as defined by formula (26) , at their optimal 

positioning. We plot the mid-distance in order to visualize that the optimal positioning of two or more bridges seems to be coordinated in a particular manner. Thus, the 

theory predicts that optimal bridge formation for an apparatus such as Fig. 4 is such that the linear distance between two bridges along a common arm is minimized 

as much as the availability of bridge-building ants allows for under the given geometric constraints imposed by apex angle. For the quantitative results presented here, a 

foraging density value of approximately 2.2 is used. Qualitatively similar results are obtained for a variety of different parameter values. 
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Reid et al. (2015) is shown to be a special case of the more general

asymmetric apparatus. 

However, when the angle θ is small, we observe deviations

from the above behavior. In this case, bridges parallel to the

main trail axis can form even when the two angles are not equal

( Fig. 6 b). When the two angles are equal, the bridge is skewed such

that it is further down the arm associated with the angle φ (the

longer arm). This is due to the unequal lengths of the two arms

of the apparatus ( Fig. 3 ). The arm associated with the angle θ is
horter than that associated with angle φ, and the arm lengths

efine the maximum distance that the bridge can travel. In this

egime, one end of the bridge meets the maximum distance of the

horter arm, but the other end continues to travel further down

he longer arm. This phenomenon also explains the presence of a

kink’ in the curve in Fig. 6 b. 

Nonetheless, the trend that the difference in distance increases

s the angle φ increases is still observed, such that a similar tran-

ition from a negative difference to a positive difference occurs,
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Fig. 8. Fig. 8 a shows, as a function of angle θ , the greatest possible vertical distance a living bridge can travel along an apparatus and the distance values d 1 , d 2 , and d 3 
that optimize the density function (24) and determine the optimal positioning of a living bridge. Fig. 8 b shows the mid-distance, as defined by formula (26) , between two 

consecutive bridges at their optimal positioning. Thus, the theory predicts that optimal bridge formation for an apparatus such as Fig. 5 is such that the linear distance 

between all three bridges along common arms is minimized as much as the availability of bridge-building ants allows for under the given geometric constraints imposed 

by apex angle. For the quantitative results presented here, a foraging density value of approximately 2.2 is used. Qualitatively similar results are obtained for a variety of 

different parameter values. 
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lbeit when φ > θ . Therefore, in general we predict bridges to

ravel further down the arm associated with angle φ when φ is

mall, and travel further down the arm associated with angle θ
hen φ is large. This prediction holds as parameters are varied

nd for a wide range of angles. 

We can predict not only the optimal final position of a liv-

ng bridge, but also the optimal bridge formation process, by con-

training the bridge length to certain values shorter than the final

ength and solving for the optimal bridge at each length (the ap-

endix contains the details of solving this constrained optimiza-

ion problem). Because Eq. (27) is true for any bridge length, it

redicts that a living bridge forms at the apex of the apparatus

nd immediately establishes an angle with respect to the main

rail axis that is completely determined by the ratio cos (θ ) 
cos (φ) 

. This

ngle with respect to the main trail remains constant as the liv-

ng bridge moves down the apparatus to its equilibrium position,

t least until the bridge “runs out of road” along one arm or the

ther. That is, for fixed θ and φ, the orientation of the living bridge

nly changes as the bridge moves down the apparatus if it reaches

he bottom of the shorter side before establishing its equilibrium

osition. 

.2. Multiple obstacles scenario 

When there are multiple obstacles, we find that multiple

ridges form, although, as with asymmetric obstacles, the posi-

ion of the bridges depends on the angle of the apparatus ( Figs. 7
nd 8 ). For the case of two obstacles (7) , small and moderate an-

les result in optimal bridges which are situated halfway between

he two apexes, such that the two bridges form a straight path. In

his regime, as the angle of the apparatus increases, the maximal

ossible distance that a bridge can move from the apex, D max , in-

reases, and both bridges have distance D max 
2 from each apex (note

hat D max increases, rather than decreases, with the apparatus an-

le because of the nonzero width of the apparatus arm, see Meth-

ds and Reid et al., 2015 ). Furthermore, the distance between the

wo bridges remains 0. At large angles, however, the bridges are

redicted to separate and move closer to their respective apex as

he angle increases further. This is illustrated by the distance of the

wo bridges from the apex decreasing and the distance between

he two bridges increasing. 

For the case of three obstacles, there are three, rather than two

egimes ( Fig. 8 ). For small apparatus angles, only two bridges form,

hich together extend the main trail axis in a straight line. Here,

s the angle increases, the maximum possible distance from the

pexes ( D max ) increases, and the outer bridges remain at the max-

mum distance d 1 = d 2 = D max , while the inner bridge has zero

ength. For moderate angles, there are three bridges, which to-

ether form a straight line. As the angle increases in this regime,

he bridges move increasingly toward the middle of the apparatus.

t large angles, the three bridges separate, as in the two-obstacle

ase, and all three bridges have equal length. As the apparatus

ngle increases further, each bridge moves towards its respective

pex. 
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Fig. 9. In nature, the density of ants on a trail can vary dramatically. Motivated by this, we investigated how ant density affects our previous results. For example, we 

compare the quantitative results as shown in Fig. 9 a with those obtained by decreasing ( 9 a) and increasing ( 9 b) the density. In general, the effects of changing the angle of 

the apparatus become more larger as ant density increases. However, the qualitative features of our results remain the same across densities. The situation is highly similar 

for the other apparatus configurations considered in this work. Thus, the predictions made by the theory are robust with respective to the qualitative behavior predicted. 
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Fig. 10. Figure shows the percent maximum relative error as defined in Section 3.4 for the asymmetric apparatus model. Figures such as this provide an approach for 

experimentalists to determine how close observed densities corresponding to a living bridge configuration are to those predicted to be optimal by the theoretical models for 

various apex angles. We promote parameter domains that lead to higher percent maximum relative error as favorable regions for an experimentalist to target since there 

the cost of deviating from the optimal position is relatively high. 

Fig. 11. Figure shows the percent maximum relative error as defined in 

Section 3.4 for the two-apex apparatus model. Figures such as this provide an ap- 

proach for experimentalists to determine how close observed densities correspond- 

ing to a living bridge configuration are to those predicted to be optimal by the theo- 

retical models for various apex angles. Locations of dramatic changes in the percent 

relative error closely align with those of the results from Fig. 7 a. We promote pa- 

rameter domains that lead to higher percent maximum relative error as favorable 

regions for an experimentalist to target since there the cost of deviating from the 

optimal position is relatively high. 
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Fig. 12. Figure shows the percent maximum relative error as defined in 

Section 3.4 for the three-apex apparatus model. Figures such as this provide an ap- 

proach for experimentalists to determine how close observed densities correspond- 

ing to a living bridge configuration are to those predicted to be optimal by the theo- 

retical models for various apex angles. Locations of dramatic changes in the percent 

relative error closely align with those of the results from Fig. 8 a. We promote pa- 

rameter domains that lead to higher percent maximum relative error as favorable 

regions for an experimentalist to target since there the cost of deviating from the 

optimal position is relatively high. 
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.3. The role of ant density 

In nature, the density of ants on a trail can vary dramatically,

epending on the time of day, the size of the colony, and the

mount of available food in the trail’s vicinity. We investigated how

nt density affects our previous results. We show results for the

symmetric apparatus, although we find qualitatively similar re-

ults for the two-obstacle and three-obstacle scenarios. 

In general, the effects of changing the angle of the apparatus

ecome larger as ant density increases ( Fig. 9 a and b). However,

he qualitative features of our results remain the same across den-

ities. Thus, performing experiments on trails with higher densities

f ants will improve the ability to detect the patterns of bridge for-

ation that we predict, if ants build bridges in order to maximize

oraging rate as hypothesized in Reid et al. (2015) . 
.4. Comparison with experimental observations 

We now describe an approach for comparing our theoretical

redictions with future experimental results. Specifically, we ex-

mine how much variation is possible, in terms of the relative er-

or, for the density when compared with the predicted maximized

ensity whenever the army ant living bridge position is allowed to

eviate up to 25% from the position that is predicted to maximize

he density. Let ρmax be the optimized density, then 

 Rel Err = 

ρmax − ρ

ρmax 
× 100 , (28) 

pecifies the percent relative error. Since in our model the density

is a function of the position of living bridges, we allow the po-

itions of any living bridges to deviate up to 25% from the position

hat is predicted to maximize the density, and then compute the
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maximum of all possible relative error (29) within this range. That

is, for fixed apparatus apex angles let S denote the set of all bridge

positions that lie within 25% of the position that maximizes the

density ρ , then we define 

% Max Rel Err = max 
S 

ρmax − ρ

ρmax 
× 100 , (29)

Furthermore, we carry out this procedure for each of the apparatus

apex angles considered in the results presented in the last section.

We note that we choose a deviation of up to 25% from the pre-

dicted optimal position since it consistently leads to percent rel-

ative error values around or below 10%-15% which should be an

acceptable range for the relevant types of experiments. 

Figs. 10–12 display the outcome of the procedure just described

to the asymmetric, two-bridge, and three-bridge scenarios respec-

tively. We promote parameter domains that lead to higher percent

maximum relative error as favorable regions for an experimentalist

to target since there the cost of deviating from the optimal position

is relatively high. Essentially, the results presented in Figs. 10 –12

provide guides to an experimenter for parameter ranges where we

expect observed bridges to more closely match the predicted opti-

mal bridges. Additionally, they also give a new prediction that can

be tested by experimenters: in high max relative error regions, we

expect smaller variations in bridge configuration across repeated

trials, while in low max relative error regions, we expect greater

variation. 

4. Conclusion 

Determining the details of the construction of army ant living

bridges is important to understanding the collective behavior of

army ants. We extended a mathematical model for a specific case

living bridge construction into a broad theoretical framework that

may be applied to a variety of increasingly complex natural and

experimental obstacles, which are predicted to result in the forma-

tion of a living bridge by foraging army ants. Using this framework,

we made explicit predictions that can be experimentally tested.

In particular, for each scenario, we identified qualitatively differ-

ent bridge-building regimes, depending on the configuration of the

experimental apparatus, which will be more amenable to testing

in the field. If the living bridges that army ants construct function

mainly to maximize foraging rate, then these different regimes will

be observed in nature. 
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Appendix 

In this appendix, we expound additional properties of the the-

ory presented in the main body of this work by carrying out

a more detailed mathematical analysis of density functions such

as the one from Reid et al. (2015) and those of Eqs. (11) and

(19) . We note that in the interest of mathematical generality, in

this appendix we adopt slightly different notation than is used in

Reid et al. (2015) and Section 2 . 

We begin with the observation that the density function (3) ap-

plied to the configuration from Reid et al. (2015) can be written

as 

ρ(x ) = 

N (x ) 

f (x ) 
= 

ax 2 + b 

px + q 
, (30)
here a, b, p, q are parameters. The biological interpretation of

q. (30) is that the quadratic function N (x ) = ax 2 + b describes the

elevant number of ants while the linear function f (x ) = px + q de-

cribes the relevant linear distance of travel. The only a priori as-

umption that we place on the coefficients a, b, p, q is that p, q

ust be chosen so that f (x ) = px + q is positive for all biologically

easonable values of the independent variable x . As discussed in

eid et al. (2015) , the fact that N (x ) is quadratic, while f ( x ) is lin-

ar and positive is a key point of the cost-benefit trade-off aspect

f the theory of army ant living bridge formation. 

We proceed with our analysis by computing the first and sec-

nd derivatives of (30) with respect to the independent variable x

hus obtaining 

′ (x ) = 

apx 2 + 2 aqx − pb 

( px + q ) 2 
, (31)

′′ (x ) = 

2(aq 2 + bp 2 ) 

(px + q ) 3 
. (32)

ow we seek to determine conditions under which Eq. (30) is

aximized for a unique positive value x ∗ ∈ [0, M ], where M rep-

esents the maximum possible distance value. Thus, we seek to

etermine a positive value of x in the interval [0, M ] such that
′ (x ) = 0 and ρ′ ′ ( x ) < 0. Using the assumption that f (x ) = px + q

s positive for all biologically reasonable values of the indepen-

ent variable x , this will happen whenever apx 2 + 2 aqx − pb = 0

nd aq 2 + bp 2 < 0 , and therefore whenever x ∗ satisfies 

 < x ∗ = − q 

p 
+ 

√ (
q 

p 

)2 

− b 

a 
≤ M, (33)

nd 

b 

a 
< −

(
q 

p 

)2 

. (34)

ote that in order to obtain a positive maximizing value of x in the

nterval [0, M ], it must be the case that b 
a < 0 . 

Conditions (33) and (34) can easily be used to recover the re-

ults on optimal bridge positioning from Reid et al. (2015) . The

enefit of the different approach taken here is that it is ap-

licable in situations not necessarily covered by the analysis of

eid et al. (2015) , provided that the configuration is such that the

ositioning of the army ant living bridge is completely determined

y a single distance variable x . More interestingly, the analysis just

iven suggests how to move to multi-variable problems via anal-

gy. 

Consider the two-variable function 

(x, y ) = 

N (x, y ) 

f (x, y ) 
= 

ax 2 + bxy + cy 2 + d 

px + qy + r 
, (35)

here now the only assumptions on the parameters a, b, c, d, p,

, r is that p, q, r are such that f (x ) = px + qy + r is positive for all

iologically reasonable values of the independent variables x, y . We

ote two points regarding Eq. (35) : While we restrict our analysis

o the two-variable case for notational simplicity, our work makes

lear how to proceed in cases of three or more variables. More

mportantly, while (35) is similar in form to Eqs. (11) and (19) of

ection 2 ; it is only locally equivalent due to the presence of the

quare root in (10) and the absolute value in (23) . Nevertheless, an

nalysis of (35) still provides valuable insight into the results we

btain from Eqs. (11) and (19) , namely it aids in the explanation

or the symmetry of the results derived from (19) . 

As before, we proceed with our analysis by computing the first

nd second derivatives of (35) with respect to the independent

ariables x, y thus obtaining 

∂ρ

∂x 
= 

apx 2 + 2 aqxy + (bq − cp) y 2 + 2 arx + bry − dp 

(px + qy + r) 2 
, (36)
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∂ρ

∂y 
= 

(bp − aq ) x 2 + 2 cpxy + cqy 2 + brx + 2 cry − dq 

(px + qy + r) 2 
, (37) 

∂ 2 ρ

∂x 2 
= 

(2 aq 2 − 2 bpq + 2 cp 2 ) y 2 + (4 aqr − 2 bpr ) y + 2(ar 2 + dp 2 ) 

(px + qy + r) 3 
, 

(38) 

∂ 2 ρ

∂y 2 
= 

(2 aq 2 − 2 bpq + 2 cp 2 ) x 2 + (4 cpr − 2 bqr ) x + 2(cr 2 + dq 2 ) 

(px + qy + r) 3 
,

(39) 

∂ 2 ρ

∂ x∂ y 
= 

2(bq − cp 2 − aq 2 ) xy + r(bp − 2 aq ) x + r(bq − 2 cp) y + 2 dq + br 2 

(px + qy + r) 3 
. 

(40) 

e would again like to find conditions for unique positive values

or x and y in intervals [0, M ] and [0, N ] respectively that maxi-

ize the function (35) ). In general, the complexity of the expres-

ions in Eqs. (36) –(40) make solving explicitly for maximizing val-

es of x and y difficult. However, there are simplifying assump-

ions that can be made that are relevant to the multi-bridge con-

gurations studied in Section 2 , that is, the case whenever b = 0 ,

 = c, and p = q . This is in perfect analogy with the density func-

ion (19) from Section 2 . Under these assumptions, we get 

∂ρ

∂x 
= 

apx 2 + 2 apxy − apy 2 + 2 arx − dp 

(px + py + r) 2 
, (41) 

∂ρ

∂y 
= 

−apx 2 + 2 apxy + apy 2 + 2 ary − dp 

(px + py + r) 2 
, (42) 

∂ 2 ρ

∂x 2 
= 

2(2 ap 2 y 2 + 2 apry + (ar 2 + dp 2 )) 

(px + py + r) 3 
, (43) 

∂ 2 ρ

∂y 2 
= 

2(2 ap 2 x 2 + 2 aprx + (ar 2 + dp 2 )) 

(px + py + r) 3 
, (44) 

∂ 2 ρ

∂ x∂ y 
= 

−2(2 ap 2 xy + aprx + apry − dp) 

(px + py + r) 3 
, (45) 

rom which one can see that there is a value t satisfying x = y = t

nd 

 = −1 

2 

r 

p 
+ 

1 

2 

√ (
r 

p 

)2 

+ 2 

d 

a 
(46) 

o that ∂ρ
∂x 

(t , t ) = 

∂ρ
∂y 

(t , t ) = 0 . That is, there is a symmetric critical

oint for Eq. (35) . Moreover, it is easy to see that when evaluated

t ( t, t ) we have 

 = 

∂ 2 ρ

∂x 2 
∂ 2 ρ

∂y 2 
−

(
∂ 2 ρ

∂ x∂ y 

)2 

> 0 . (47)

hus, if 2 ap 2 t 2 + 2 aprt + ar 2 + dp 2 < 0 , then the symmetric criti-

al point ( t, t ) is at least a local maximum for (35) . In addition,

ne can conclude from (46) when t will be in an interval of the

orm [0, M ]. This analysis aids in our understanding of the sym-

etry of the results summarized in Fig. 7 b obtained for the opti-

al bridge-position in the two-bridge configuration such as illus-

rated by Fig. 4 . Similar reasoning for three independent variables

an help to explain the symmetric results for the three-bridge con-

guration. 

Now, we derive the results for the constrained optimization

roblem described in Section 3 . Specifically, we derive what is pre-

icted to happen when the overall living bridge length is inter-

reted as a parameter. Doing so provides insight into the process
f optimal bridge formation. Let b f represent the bridge length pa-

ameter. When b f is fixed, through Eqs. (9)–(11) we arrive at a con-

trained optimization problem. That is, we seek to optimize the

ensity 

= 

N − n b f 
α

f 
, (48) 

ubject to the constraint 

 

2 
f = 

(
L A,S 

D max , 1 

d 1 

)2 

+ 

(
L A,L 

D max , 2 

d 2 

)2 

− 2 d 1 d 2 
L A,S L A,L cos (θ + φ) 

D max , 1 D max , 2 

, 

(49) 

here 

f = L T + L A + b f −
L A,S 

D max , 1 

d 1 − L A,L 

D max , 2 

d 2 , (50) 

nd 

 b f 
= 

w �

(
1 − w � tan 

(
θ+ φ

2 

))
l n w n 

b 2 f . (51) 

e note that n b f and hence N −
n b f 
α are now held constant. The

alues for L A, S , L A, L , D max, 1 and D max, 2 are obtained just as before.

Examining Eqs. (48) and (49) we see that we need to maximize

 function of the form 

(x, y ) = 

N 

A − px − qy 
, (52) 

ubject to a constraint of the form 

(x, y ) = p 2 x 2 + q 2 y 2 − 2 pqCxy = k 2 , (53) 

here N , A, k, p, q and C are parameters. To simplify the prob-

em, we observe that maximizing (52) subject to (53) is equivalent

o minimizing f (x, y ) = A − px − qy subject to the same constraint.

his is done in a straightforward manner using the method of La-

range multipliers. That is, we solve 

p = λ(2 p 2 x − 2 pqCy ) , (54) 

q = λ(2 q 2 y − 2 pqCx ) , (55) 

 

2 = p 2 x 2 + q 2 y 2 − 2 pqCxy, (56) 

or λ, x and y that minimize f (x, y ) = A − px − qy . This is easily

one using (54) and (55) to set px − qCy = qy − pCx and then sub-

tituting into (56) and solving for the remaining variable. This gives

olution 

 = 

k 

p 

√ 

1 

2(1 − C) 
, (57) 

 = 

k 

q 

√ 

1 

2(1 − C) 
, (58) 

here we have retained only the positive square roots since in our

pplication we seek positive distance values. Setting k = b f , p =
L A,S 

D max , 1 
, q = 

L A,L 

D max , 2 
and C = cos (θ + φ) 

 1 = 

D max , 1 

L A,S 

√ 

1 

2(1 − cos (θ + φ)) 
b f , (59) 

 2 = 

D max , 2 

L A,L 

√ 

1 

2(1 − cos (θ + φ)) 
b f . (60) 
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Keep in mind that we must set d i = D max ,i if b f is such that the pre-

dicted value of either d 1 or d 2 is greater than or equal to D max, 1 

or D max, 2 respectively. Furthermore, using the expressions (7) and

(8) together with Eqs. (59) and (60) , we see that the ratio of opti-

mal distance values d 1 and d 2 satisfies 

d 1 
d 2 

= 

cos (θ ) 

cos (φ) 
. (61)

From this equation we can deduce interesting predictions. In par-

ticular, rearranging Eq. (61) gives 

d 1 = 

cos (θ ) 

cos (φ) 
d 2 . (62)

The biological consequences of this are described in Section 3.1 . 
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