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Aggregating multiple non-expert opinions into a collective estimate can improve

accuracy across many contexts. However, two sources of error can diminish col-

lective wisdom: individual estimation biases and information sharing between

individuals. Here, we measure individual biases and social influence rules in

multiple experiments involving hundreds of individuals performing a classic

numerosity estimation task. We first investigate how existing aggregation

methods, such as calculating the arithmetic mean or the median, are influenced

by these sources of error. We show that the mean tends to overestimate, and the

median underestimate, the true value for a wide range of numerosities. Quanti-

fying estimation bias, and mapping individual bias to collective bias, allows us

to develop and validate three new aggregation measures that effectively counter

sources of collective estimation error. In addition, we present results from a

further experiment that quantifies the social influence rules that individuals

employ when incorporating personal estimates with social information. We

show that the corrected mean is remarkably robust to social influence, retaining

high accuracy in the presence or absence of social influence, across numerosities

and across different methods foraveraging social information. Using knowledge

of estimation biases and social influence rules may therefore be an inexpensive

and general strategy to improve the wisdom of crowds.

1. Introduction
The proliferation of online social platforms has enabled the rapid expression of

opinions on topics as diverse as the outcome of political elections, policy decisions

or the future performance of financial markets. Because non-experts contribute

the majority of these opinions, they may be expected to have low predictive

power. However, it has been shown empirically that by aggregating these

non-expert opinions, usually by taking the arithmetic mean or the median of

the set of estimates, the resulting ‘collective’ estimate can be highly accurate

[1–6]. Experiments with non-human animals have demonstrated similar results

[7–13], suggesting that aggregating diverse estimates can be a simple strategy

for improving estimation accuracy across contexts and even species.

Theoretical explanations for this ‘wisdom of crowds’ typically invoke the

law of large numbers [1,14,15]. If individual estimation errors are unbiased and
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centre at the true value, then averaging the estimates of many

individuals will increasingly converge on the true value. How-

ever, empirical studies of individual human decision-making

readily contradict this theoretical assumption. A wide variety

of cognitive and perceptual biases have been documented in

which humans seemingly deviate from rational behaviour

[16–18]. Empirical ‘laws’ such as Stevens’ power law [19]

have described the nonlinear relationship between the subjec-

tive perception, and actual magnitude, of a physical stimulus.

Such nonlinearities can lead to a systematic under- or overesti-

mation of a stimulus, as is frequently observed in numerosity

estimation tasks [20–23]. Furthermore, the Weber–Fechner

law [24] implies that lognormal, rather than normal,

distributions of estimates are common. When such biased indi-

vidual estimates are aggregated, the resulting collective

estimate may also be biased, although the mapping between

individual and collective biases is not well understood.

Sir Francis Galton was one of the first to consider the effect of

biased opinions on the accuracy of collective estimates. He pre-

ferred the median over the arithmetic mean, arguing that the

latter measure ‘give[s] a voting power to ‘cranks’ in proportion

to their crankiness’ [25]. However, if individuals are prone to

under- or overestimation in a particular task, then the median

will also under- or overestimate the true value. Other aggrega-

tion measures have been proposed to improve the accuracy of

the collective estimate, such as the geometric mean [26], the aver-

age of the arithmetic mean and median [27], and the ‘trimmed

mean’ (where the tails of a distribution of estimates are trimmed

and then the arithmetic mean is calculated from the truncated

distribution) [28]. Although these measures may empirically

improve accuracy in some cases, they tend not to address directly

the root cause of collective error (i.e. estimation bias). Therefore, it

is not well understood how they generalize to other contexts and

how close they are to the optimal aggregation strategy.

Many (though not all) models of the wisdom of crowds also

assume that opinions are generated independently of one

another, which tends to maximize the information contained

within the set of opinions [1,14,15]. But in real-world contexts,

it is more common for individuals to share information with,

and influence, one another [26,29,30]. In such cases, the indi-

vidual estimates used to calculate a collective estimate will be

correlated to some degree. Social influence cannot only

shrink the distribution of estimates [26] but may also systema-

tically shift the distribution, depending on the rules that

individuals follow when updating their personal estimate in

response to available social information. For example, if indi-

viduals with extreme opinions are more resistant to social

influence, then the distribution of estimates will tend to shift

towards these opinions, leading to changes in the collective

estimate as individuals share information with each other. In

short, social influence may induce estimation bias, even if indi-

viduals in isolation are unbiased.

Quantifying how both individual estimation biases and

social influence affect collective estimation is therefore crucial

to optimizing, and understanding the limits of, the wisdom of

crowds. Such an understanding would help to identify which

of the existing aggregation measures should lead to the highest

accuracy. It could also permit the design of novel aggregation

measures that counteract these major sources of error, poten-

tially improving both the accuracy and robustness of the

wisdom of crowds beyond that allowed by existing measures.

Here, we collected five new datasets, and analysed eight

existing datasets from the literature, to characterize individual
estimation bias in a well-known wisdom of crowds task, the

‘jellybean jar’ estimation problem. In this task, individuals in

isolation simply estimate the number of objects (such as jelly-

beans, gumballs, or beads) in a jar [5,6,31,32] (see Material

and methods for details). We then performed an experiment

manipulating social information to quantify the social

influence rules that individuals use during this estimation

task (Material and methods). We used these results to quantify

the accuracy of a variety of aggregation measures, and

identified new aggregation measures to improve collective

accuracy in the presence of individual bias and social influence.
2. Material and methods
2.1. Numerosity estimation
For the five datasets that we collected, we recruited members of

the community in Princeton, NJ, USA on 26–28 April and l May

2012, and in Santa Fe, NM, USA on 17–20 October 2016. Each

participant was presented with one jar containing one of the

following numbers of objects: 54 (n ¼ 36), 139 (n ¼ 51), 659 (n ¼
602), 5897 (n ¼ 69) or 27 852 (n ¼ 54) (see figure 1a for a represen-

tative photograph of the kind of object and jar used for the three

smallest numerosities; electronic supplementary material, figure

S1 for a representative photograph of the kind of object and jar

used for the largest two numerosities.). To motivate accurate esti-

mates, the participants were informed that the estimate closest to

the true value for each jar would earn a monetary prize. The par-

ticipants then estimated the number of objects in the jar. No time

limit was set, and participants were advised not to communicate

with each other after completing the task.

Eight additional datasets were included for comparative pur-

poses and were obtained from [5,6,31,32]. Details of statistical

analyses and simulations performed on the collected datasets

are provided in the electronic supplementary material.

2.2. Social influence experiment
For the experiments run in Princeton (number of objects J ¼ 659),

we additionally tested the social influence rules that individuals

use. The participants first recorded their initial estimate, G1.

Next, participants were given ‘social’ information, in which they

were told that N ¼ f1, 2, 5, 10, 50, 100g previous participants’ esti-

mates were randomly selected and that the ‘average’ of these

guesses, S, was displayed on a computer screen. Unbeknownst

to the participant, this social information was artificially generated

by the computer, allowing us to control, and thus decouple, the

perceived social group size and social distance relative to the par-

ticipant’s initial guess. Half of the participants were randomly

assigned to receive social information drawn from a uniform distri-

bution from G1/2 to G1, and the other half received social

information drawn from a uniform distribution from G1 to 2G1.

Participants were then given the option to revise their initial

guess by making a second estimate, G2, based on their personal

estimate and the perceived social information that they were

given. Participants were informed that only the second guess

would count towards winning a monetary prize. We therefore con-

trolled the social group size by varying N and controlled the social

distance independently of the participant’s accuracy by choosing S
from G1/2 to 2G1. Details of the social influence model and simu-

lations performed using these data are provided in the electronic

supplementary material.

2.3. Designing ‘corrected’ aggregation measures
For a lognormal distribution, the expected value of the mean is

given by Xmean ¼ exp (mþ s2=2) and the expected value of the

median is Xmedian ¼ exp (m), where m and s are the two

http://rsif.royalsocietypublishing.org/
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Figure 1. The effect of numerosity on the distribution of estimates. (a) An example jar containing 659 objects (ln(J ) ¼ 6.5). (b) The histogram of estimates (grey
bars) resulting from the jar shown in (a) closely approximates a lognormal distribution (solid black line); dotted vertical line indicates the true number of objects.
A lognormal distribution is described by two parameters, m and s, which are the mean and standard deviation, respectively, of the normal distribution that results
when the logarithm of the estimates is taken (inset). (c – d ) The two parameters m and s increase linearly with the logarithm of the true number of objects, ln(J ).
Solid lines: maximum-likelihood estimate, shaded area: 95% confidence interval. The maximum-likelihood estimate was calculated using only the five original
datasets collected for this study (black circles); the eight other datasets collected from the literature are shown only for comparison (grey circles indicate other
datasets for which the full dataset was available, white circles indicate datasets for which only summary statistics were available; see electronic supplementary
material, §S1).
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parameters describing the distribution. Our empirical mea-

surements of estimation bias resulted in the best-fit relationships

m ¼ mmln(J ) þ bm and s ¼ msln(J ) þ bs (figure 1c,d). We replace

m and s in the first two equations with the best-fit relationships,

and then solve for J, which becomes our new, ‘corrected’, estimate

of the true value. This results in a ‘corrected’ arithmetic mean:

XC
mean ¼

exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

s( ln Xmean � bm)þm2
m þ 2mmmsbs

q
�msbs �mm

m2
s

0
@

1
A

and a ‘corrected’ median:

XC
median ¼ exp

( ln Xmedian � bm)

mm

� �
:

This procedure can be readily adapted for other estimation

tasks, distributions of estimates and estimation biases.
2.4. A maximum-likelihood aggregation measure
For this aggregation measure, the full set of estimates is used to

form a new collective estimate, rather than just an aggrega-

tion measure such as the mean or the median to generate a

corrected measure. We again invoke the best-fit relationships

in figure 1c,d, which imply that, for a given actual number of

objects J, we expect a lognormal distribution described by

parameters m ¼ mmln(J ) þ bm and s ¼ msln(J ) þ bs. We therefore

scan across values of J and calculate the likelihood that each

associated lognormal distribution generated the given set of esti-

mates. The numerosity that maximizes this likelihood becomes

the collective estimate of the true value.
3. Results
3.1. Quantifying estimation bias
To uncover individual biases in estimation tasks, we first

sought to characterize how the distribution of individual esti-

mates changes as a function of the true number of objects J
(figure 1a). We performed experiments across a greater than

500-fold range of numerosities, from 54 to 27 852 objects, with

a total of 812 people sampled across the experiments. For all
numerosities tested, an approximately lognormal distribution

was observed (see figure 1b for a histogram of an example data-

set; electronic supplementary material, figure S2 for histograms

of all other datasets and figure S3 for a comparison of the data-

sets to lognormal distributions). Log normal distributions can be

described by two parameters, m and s, which correspond to the

arithmetic mean and standard deviation, respectively, of the

normal distribution that results when the original estimates

are log-transformed (figure 1b, inset; electronic supplementary

material, §S1 on how the maximum-likelihood estimates of m

and s were computed for each dataset).

We found that the shape of the lognormal distribution

changes in a predictable manner as the numerosity changes.

In particular, the two parameters of the lognormal distribution,

m ands, both exhibit a linear relationship with the logarithm of

the number of objects in the jar (figure 1c,d ). These relation-

ships hold across the entire range of numerosities that we

tested (which spans nearly three orders of magnitude). That

the parameters of the distribution covary closely with numer-

osity allows us to directly compute how the magnitude of

various aggregation measures changes with numerosity, and

provides us with information about human estimation behav-

iour which we can exploit to improve the accuracy of the

aggregation measures.

3.2. Expected error of aggregation measures
We used the maximum-likelihood relationships shown in figure

1c,d to first compute the expected value of the arithmetic mean,

given by exp (mþ s2=2), and the median, given by exp (m), of

the lognormal distribution of estimates, across the range of

numerosities that we tested empirically (between 54 and 27

852 objects). We then compared the magnitude of these two

aggregation measures to the true value to identify any systema-

tic biases in these measures (we note that any aggregation

measure may be examined in this way, but for clarity here we

display just the two most commonly used measures).

Overall, across the range of numerosities tested, we found

that the arithmetic mean tended to overestimate, while the

median tended to underestimate, the true value (figure 2a).

This is corroborated by our empirical data: for four out of

http://rsif.royalsocietypublishing.org/
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the five datasets, the mean overestimated the true value,

while the median underestimated the true value in four of

five datasets (figure 2a). We note that our model predicts

qualitatively different patterns for very small numerosities

(outside of the range that we tested experimentally). Specifi-

cally, in this regime the model predicts that the mean and the

median both overestimate the true value, with large relative

errors for both measures. However, we expect humans to

behave differently when presented with a small number of

objects that can be counted directly compared to a large

number of objects that could not be easily counted; therefore,

we avoid extrapolating our results and apply our model only

to the range that we tested experimentally (spanning nearly

three orders of magnitude).

That the median tends to underestimate the true value

implies that the majority of individuals underestimate

the true numerosity. This conforms with the results of other

studies demonstrating an underestimation bias in numerosity

estimation in humans (e.g. [21–23,33]). Despite this, the arith-

metic mean tends to overestimate the true value because the

lognormal distribution has a long tail (figure 1b), which inflates

the mean. Indeed, because the parameter s increases with

numerosity, the dispersion of the distribution is expected

to increase disproportionally quickly with numerosity, such

that the coefficient of variation (the ratio between the standard

deviation and the mean of the untransformed estimates)

increases with numerosity (electronic supplementary material,

figure S4). This finding differs from other results showing a

constant coefficient of variation across numerosities [20,21].

This contrasting result may be explained by the larger-than-

typical range of numerosities that we evaluated here (with

respect to previous studies), which improves our ability to

detect a trend in the coefficient of variation. Alternatively

(and not mutually exclusively), it may result from other studies

displaying many numerosities to the same participant, which

may cause correlations in a participant’s estimates [21,22]

and reduce variation. By contrast, we only showed a single

jar to each participant in our estimation experiments. Overall,

the degree of underestimation and overestimation of the

median and mean, respectively, was approximately equal

across the range of numerosities tested, and we did not

detect consistent differences in accuracy between these two

aggregation measures (figure 2b).
3.3. Designing and testing aggregation measures that
counteract estimation bias

Knowing the expected error of the aggregation measures relative

to the true value, we can design new measures to counter this

source of collective estimation error. Using this methodology,

we specify functional forms of the ‘corrected’ arithmetic

mean and the ‘corrected’ median (Material and methods). In

addition to these two adjusted measures, we propose a maxi-

mum-likelihood method that uses the full set of estimates,

rather than just the mean or median, to locate the numerosity

that most probably produced those estimates (Material and

methods). Although applied here to the case of lognormal

distributions and particular relationships between numerosity

and the parameters of the distributions, our procedure is

general and could be used to construct specific corrected

measures appropriate for other distributions and relationships,

subsequent to empirically characterizing these patterns.

Once the corrected measures have been parametrized for a

specific context, they can be applied to a new test dataset to

produce an improved collective estimate from that data. How-

ever, the three new measures are predicted to have near-zero

error only in their expected values, which assumes an infinitely

large test dataset (and that the corrected measures have been

accurately parametrized). A finite-sized set of estimates, on

the other hand, will generally exhibit some deviation from the

expected value. It is possible that the measures will produce

different noise distributions around the expected value, which

will affect their real-world accuracy. To address this, we

measured the overall accuracy of the aggregation measures

across a wide range of test sample sizes and numerosities,

simulating datasets by drawing samples using the maximum-

likelihood fits shown in figure 1c,d. We also conducted a

separate analysis, in which we generate test datasets by draw-

ing samples directly from our experimental data, the results

of which we include in the electronic supplementary material

(see electronic supplementary material, §S2 for details on both

methodologies and for justification of why we chose to include

the results from the simulated data in the main text).

We compared each of the new aggregation measures to

the arithmetic mean, the median, and three other ‘standard’

measures that have been described previously in the litera-

ture: the geometric mean, the average of the mean and the

http://rsif.royalsocietypublishing.org/
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median, and a trimmed mean (where we remove the smallest

10% of the data, and the largest 10% of the data, before com-

puting the arithmetic mean), in pairwise fashion, calculating

the fraction of simulations in which one measure had lower

error than the other.

All three new aggregation measures outperformed all of

the other measures (figure 3a, left five columns), displaying

lower error in 58–78% of simulations. Comparing the three

new measures against each other, the maximum-likelihood

measure performed best, followed by the corrected mean,

while the corrected median resulted in the lowest overall

accuracy (figure 3a, right three columns). The 95% confidence

intervals of the percentages are, at most,+1% of the stated

percentages (binomial test, n¼ 10 000), and therefore the

results shown in figure 3a are all significantly different from

chance. The results from our alternate analysis, using samples

drawn from our experimental data, are broadly similar, albeit

somewhat weaker, than those using simulated data: the

corrected median and maximum-likelihood measures still

outperformed all of the five standard measures, while the

corrected mean outperformed three out of the five standard

measures (electronic supplementary material, figure S5a).

While the above analysis suggests that the new aggrega-

tion measures may be more accurate than many standard

measures over a wide range of conditions, it relied on over

800 estimates to parametrize the individual estimation

biases. Such an investment to characterize estimation biases

may be unfeasible for many applications, so we asked how

large the training dataset needed to be in order to observe

improvements in accuracy over the standard measures. To

study this, we obtained a given number of estimates from

across the range of numerosities, generated a maximum-

likelihood regression on that training set, then used that

to predict the numerosity of a separate test dataset. As with

the previous analysis, we generated the training and

test datasets by drawing samples using the maximum-

likelihood fits shown in figure 1c,d, but also conducted a parallel

analysis whereby we generated training and test datasets by
drawing from our experimental data (electronic supplementary

material, §S3 for details of both methodologies).

We found rapid improvements in accuracy as the size of

the training dataset increased (figure 3b). In our simulations,

the maximum-likelihood measure begins to outperform the

median and geometric mean when the size of the training data-

set is at least 20 samples, the arithmetic mean and trimmed

mean after 55 samples, and the average of the mean and

median after 80 samples. The corrected mean required at least

105 samples, while the corrected median required at least 175

samples, to outperform the five standard measures. Using

samples drawn from our experimental data, our three measu-

res required approximately 200 samples to outperform the

five standard measures (electronic supplementary material,

figure S5b). In short, while our method of correcting biases

requires parameterizing bias across the entire range of numeros-

ities of interest, our simulations show that much fewer training

samples are sufficient for our new aggregation measures to

exhibit an accuracy higher than standard aggregation measures.

We next investigated precisely how the size of the test

dataset affects accuracy. We defined an ‘error tolerance’ as the

maximum acceptable error of an aggregation measure and

asked what is the probability that a measure achieves a given

tolerance for a particular experiment (the ‘tolerance prob-

ability’). As before, we generate test samples by drawing from

the maximum-likelihood fits but also perform an analysis draw-

ing from our experimental data (see electronic supplementary

material, §S4 for both methodologies). For all numerosities,

the three new aggregation measures tended to outperform the

five standard measures if the size of the test dataset is relatively

large (figure 4b,c; electronic supplementary material, figures S6

and S7). However, when the numerosity is large and the size of

the test dataset is relatively small, we observed markedly differ-

ent patterns. In this regime, the relative accuracy of aggregation

measures can depend on the error tolerance. For example, for

numerosity ln(J ) ¼ 10, for small error tolerances (less than

0.4), the geometric mean exhibited the lowest tolerance prob-

ability across all of the measures under consideration, but for
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large error tolerances (greater than 0.75), it is the most probable

measure to fall within tolerance (figure 4a). This means that if a

researcher wants the collective estimate to be within 40% of the

true value (error tolerance of 0.4), then the geometric mean

would be the worst choice for small test datasets at large numer-

osities, but if the tolerance was instead set to 75% of the true

value, then the geometric mean would be the best out of all

of the measures. These patterns were also broadly reflected in

our analysis using samples drawn from our experimental

data (electronic supplementary material, figures S8–S10).

Therefore, while the corrected measures should have close to

perfect accuracy at the limit of infinite sample size (and perform

better than the standard measures overall), there exist particular

regimes in which the standard measures may outperform the

new measures.

3.4. Quantifying the social influence rules
We then conducted an experiment to quantify the social influ-

ence rules that individuals use to update their personal

estimate by incorporating information about the estimates of

other people (see Material and methods for details). Briefly,

we first allowed participants to make an independent estimate.

Then we generated artificial ‘social information’ by selecting a
value that was a certain displacement from their first estimate

(the ‘social displacement’), and informed the participants that

this value was the result of averaging across a certain number

of previous estimates (the ‘social group size’). We gave the par-

ticipants the opportunity to revise their estimate, and we

measured how their change in estimate was affected by the

social displacement and social group size. By using artificial

information and masquerading it as real social information,

unlike previous studies, we were able to decouple the effect

of social group size, social displacement and the accuracy of

the initial estimate.

We found that a fraction of participants (231 out of 602 par-

ticipants) completely discounted the social information,

meaning that their second estimate was identical to their first.

We constructed a two-stage hurdle model to describe the

social influence rules by first modelling the probability that a

participant used or discarded social information, then, for the

371 participants who did use social information, we modelled

the magnitude of the effect of social information.

A Bayesian approach to fitting a logistic regression model

was used to infer whether social displacement (defined as

(S 2 G1)/G1, where S is the social estimate and G1 is the partici-

pant’s initial estimate), social distance (the absolute value of

social displacement) or social group size affected the probability

that a participant ignored, or used, social information (see elec-

tronic supplementary material, §S5 for details). Because social

distance is a function of social displacement, we did not make

inferences about these two variables separately based on their

respective credible intervals (coefficient [95% CI]: 0.22 [0.03,

0.40] for social displacement and 0.061 [20.12, 0.24] for social

distance). Instead, we graphically interpreted how these two

variables jointly affect the probability of changing one’s esti-

mate in response to social information, and overall we found

that numerically larger social estimates increased the prob-

ability of changing one’s guess, but numerically smaller social

estimates decreased that effect (figure 5a). The probability of

using social information did not depend credibly on social

group size (20.045 [20.18, 0.094]) (figure 5b). Posterior predic-

tive checks were used to verify the model captured statistical

features of the data (electronic supplementary material,

figure S11); see electronic supplementary material, figure S12a

for the posterior distributions.

We next modelled the magnitude of the change in estimate,

out of the participants who did use social information. Follow-

ing [34], we defined a measure of the strength of social influence,

a, by considering the logarithm of the participant’s revised esti-

mate, ln(G2), as a weighted average of the logarithm of the

perceived social information, ln(S), and the logarithm of the par-

ticipant’s initial estimate ln(G1), such that ln(G2) ¼ aln(S) þ
(1 2 a)ln(G1). Here, a ¼ 0 indicates that the participant’s two

estimates were identical, and therefore the individual was not

influenced by social information at all, while a ¼ 1 means the

participant’s second estimate mirrors the social information.

We again used Bayesian techniques to estimate a as a normally

distributed, logistically transformed linear function of social dis-

placement, social distance and group size (see electronic

supplementary material, §S5 for details).

Graphically, we found that the social influence weight

decreases as the social information is increasingly smaller

than the initial estimate but little effect for social information

larger than the initial estimate (coeff. [95% CI]: 0.65 [0.28,

1.07] for social displacement and 20.41 [20.82, 2 0.0052] for

social distance) (figure 5c). The social influence weight credibly
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increases with social group size (0.37 [0.17, 0.58]) (figure 5d).

Again, posterior predictive checks revealed that the model gen-

erated an overall distribution of social weights consistent with

what was found in the data (electronic supplementary material,

figure S13); see electronic supplementary material, figure S12b
for the posterior distributions.

3.5. The effect of social influence on the wisdom
of crowds

If individuals share information with each other before their

opinions are aggregated, then the independent, lognormal

distribution of estimates will be altered. As individuals

take a form of weighted average of their own estimate and

perceived social information, the distribution of estimates

should converge towards intermediate values. However, it

is not clear what effect the observed social influence rules

have on the value, or accuracy, of the aggregation measures

[35]. In particular, since the new aggregation measures intro-

duced here were parametrized on independent estimates

unaltered by social influence, their performance may degrade

when individuals share information with each other.

We simulated several rounds of influence using the rules that

we uncovered, using a fully connected social network (each indi-

vidual was connected to all other individuals), in order to

identify measures that may be relatively robust to social influ-

ence (see electronic supplementary material, §S6). We used

two alternate assumptions about how a set of estimates is
averaged, either by the individual or by an external agent,

before being presented as social information (the ‘individual

aggregation measure’), using either the geometric mean or the

arithmetic mean (see electronic supplementary material, §7).

While the maximum-likelihood measure generally performed

the best in the absence of social influence (figure 3), this measure

was highly susceptible to the effects of social influence, particu-

larly at large numerosities (figure 6). By contrast, the corrected

mean was remarkably robust to social influence, across numer-

osities, and for both individual aggregation measures, while

exhibiting nearly the same accuracy as the maximum-likelihood

measure in the absence of social influence.
4. Discussion
While the wisdom of crowds has been documented in many

human and non-human contexts, the limits of its accuracy are

still not well understood. Here we demonstrated how, why

and when collective wisdom may break down by characteriz-

ing two major sources of error, individual (estimation bias)

and social (information sharing). We revealed the limitations

of some of the most common averaging measures and intro-

duced three novel measures that leverage our understanding

of these sources of error to improve the wisdom of crowds.

In addition to the conclusions and recommendations

drawn for numerosity estimation, the methods described

here could be applied to a wide range of other estimation

tasks. Estimation biases and social influence are ubiquitous,

and estimation tasks may cluster into broad classes that are

prone to similar biases or social rules [36]. For example, the dis-

tribution of estimates for many tasks are likely to be lognormal

in nature [37], while others may tend to be normally distribu-

ted. Indeed, there is evidence that counteracting estimation

biases can be a successful strategy [38] to improve estimates

of probabilities [39–41], city populations [42], movie box

office returns [42] and engineering failure rates [43].

Furthermore, the social influence rules that we identified

empirically are similar to general models of social influence,

with the exception of the effect of the social displacement that

we uncovered. This asymmetric effect suggests that a focal indi-

vidual was more strongly affected by social information that

was larger in value relative to the focal individual’s estimate

compared to social information that was smaller than the indi-

vidual’s estimate. The observed increase in the coefficient of

variation as numerosity increased (electronic supplementary

material, figure S4b) may suggest that one’s confidence about

one’s own estimate decreases as numerosity increases, which

could lead to an asymmetric effect of social displacement.

Other estimation contexts in which confidence scales with

estimation magnitude could yield a similar effect. This effect

was combined with a weaker negative effect of the social

distance, which is reminiscent of ‘bounded confidence’ opinion

dynamics models (e.g. [44–46]), whereby individuals weigh

more strongly social information that is similar to their

own opinion. By carefully characterizing both the individual
estimation biases and collective biases generated by social infor-

mation sharing, our approach allows us to counteract such

biases, potentially yielding significant improvements when

aggregating opinions across other domains.

Other approaches have been used to improve the accuracy

of crowds. One strategy is to search for ‘hidden experts’ and

weigh these opinions more strongly [3,34,47–50]. While this
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can be effective in certain contexts, we did not find evidence of

hidden experts in our data. Comparing the group of individuals

who ignored social information and those who used social infor-

mation, the two distribution of estimations were not significantly

different (p ¼ 0.938, Welch’s t-test on the log-transformed

estimates), and the arithmetic mean, the median, nor our three

new aggregation measures were significantly more accurate

across the two groups (electronic supplementary material,

figure S14). Furthermore, searching for hidden experts requires

additional information about the individuals (such as propensity

to use social information, past performance or confidence level).

Our method does not require any additional information about

each individual, only knowledge about statistical tendencies of

the population at large (and relatively few samples may be

needed to sufficiently parametrize these tendencies).

Further refinement of our methods is possible. In cases

where the underlying social network is known [51,52], or

where individuals vary in power or influence [53], simulation

of social influence rules on these networks could lead to a

more nuanced understanding of the mapping between indi-

vidual and collective estimates. In addition, aggregation

measures can be generalized in a straightforward manner to

calculate confidence intervals, in which an estimate range is

generated that includes the true value with some probability.

To improve the accuracy of confidence intervals, information
about the sample size and other features that we showed to

be important can be included.

In summary, counteracting estimation biases and social

influence may be a simple, general and computationally

efficient strategy to improve the wisdom of crowds.
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pluralité de voix. Paris, France: Imprimerie Royale.

16. Kahneman D. 2011 Thinking, fast and slow.
New York, NY: Straus and Giroux.

17. Nickerson R. 1998 Confirmation bias: a ubiquitous
phenomenon in many guises. Rev. Gen. Psychol. 2,
175 – 220.

18. Haselton M, Nettle D. 2006 The paranoid optimist:
an integrative evolutionary model of cognitive
biases. Pers. Soc. Psychol. Rev. 10, 47 – 66.

19. Stevens S. 1957 On the psychophysical law. Psychol.
Rev. 64, 153 – 181. (doi:10.1037/h0046162)

20. Whalen J, Gallistel C, Gelman R. 1999 Nonverbal
counting in humans: the psychophysics of number
representation. Psychol. Sci. 10, 130 – 137. (doi:10.
1111/1467-9280.00120)

21. Izard V, Dehaene S. 2008 Calibrating the mental
number line. Cognition 106, 1221 – 1247. (doi:10.
1016/j.cognition.2007.06.004)

22. Krueger LE. 1982 Single judgments of numerosity.
Atten. Percept. Psychophys. 31, 175 – 182. (doi:10.
3758/BF03206218)

23. Krueger LE. 1984 Perceived numerosity: a comparison
of magnitude production, magnitude estimation, and
discrimination judgments. Atten. Percept. Psychophys.
35, 536– 542. (doi:10.3758/BF03205949)

24. Krueger L. 1989 Reconciling Fechner and Stevens:
toward a unified psychophysical law. Behav. Brain
Sci. 12, 251 – 320. (doi:10.1017/
S0140525X0004855X)
25. Galton F. 1907 One vote, one value. Nature 75, 414.
(doi:10.1038/075414a0)

26. Lorenz J, Rauhut H, Schweitzer F, Helbing D. 2011
How social influence can undermine the wisdom
of crowd effect. Proc. Natl Acad. Sci. USA 108,
9020 – 9025. (doi:10.1073/pnas.1008636108)

27. Lobo M, Yao D. 2010 Human judgement is heavy
tailed: empirical evidence and implications for the
aggregation of estimates and forecasts.
Fontainebleau, France: INSEAD.

28. Armstrong J. 2001 Combining forecasts. In Principles
of forecasting: a handbook for researchers and
practitioners (ed. JS Armstrong), pp. 417 – 440.
New York, NY: Kluwer.

29. Kao A, Miller N, Torney C, Hartnett A, Couzin I. 2014
Collective learning and optimal consensus decisions
in social animal groups. PLoS Comput. Biol. 10,
e1003762. (doi:10.1371/journal.pcbi.1003762)

30. Jayles B, Kim HR, Escobedo R, Cezera S,
Blanchet A, Kameda T, Sire C, Theraulaz G.
2017 How social information can improve
estimation accuracy in human groups. Proc. Natl
Acad. Sci. 114, 12 620 – 12 625. (doi:10.1073/pnas.
1703695114)

31. Wagner C, Schneider C, Zhao S, Chen H. 2010 The
wisdom of reluctant crowds. In Proc. of the 43rd
Hawaii Int. Conf. on System Sciences, Honolulu, HI.

32. Mauboussin M. 2007 Explaining the wisdom of
crowds. Legg Mason Capital Management White
Paper.

33. Kemp S. 1984 Estimating the sizes of sports crowds.
Percept. Mot. Skills 59, 723 – 729. (doi:10.2466/pms.
1984.59.3.723)

34. Madirolas G, de Polavieja G. 2015 Improving
collective estimations using resistance to social
influence. PLoS. Comput. Biol. 11, e1004594.
(doi:10.1371/journal.pcbi.1004594)

35. Golub B, Jackson M. 2010 Naı̈ve learning in social
networks and the wisdom of crowds. Am. Econ. J.:
Microecon. 2, 112 – 149. (doi:10.1257/mic.2.1.112)

36. Steyvers M, Miller B. 2015 Cognition and collective
intelligence. In Handbook of Collective Intelligence
(eds TW Malone, MS Bernstein), pp. 119-137.
Cambridge, MA: MIT Press.

37. Dehaene S, Izard V, Spelke E, Pica P. 2008 Log or
linear? Distinct intuitions of the number scale in
Western and Amazonian indigene cultures. Science
320, 1217 – 1220. (doi:10.1126/science.1156540)

38. Laan A, Madirolas G, De Polavieja GG. 2017
Rescuing collective wisdom when the average group
opinion is wrong. Front. Robot. AI 4, 56. (doi:10.
3389/frobt.2017.00056)

39. Turner BM, Steyvers M, Merkle EC, Budescu DV,
Wallsten TS. 2014 Forecast aggregation via
recalibration. Mach. Learn. 95, 261 – 289. (doi:10.
1007/s10994-013-5401-4)
40. Lee MD, Danileiko I. 2014 Using cognitive models to
combine probability estimates. Judgm. Decis. Mak.
9, 259 – 273.
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