
, 20133305, published 23 April 2014281 2014 Proc. R. Soc. B
 
Albert B. Kao and Iain D. Couzin
 
maximized by small group sizes
Decision accuracy in complex environments is often
 
 

Supplementary data

tml 
http://rspb.royalsocietypublishing.org/content/suppl/2014/04/17/rspb.2013.3305.DC1.h

 "Data Supplement"

References
http://rspb.royalsocietypublishing.org/content/281/1784/20133305.full.html#ref-list-1

 This article cites 55 articles, 27 of which can be accessed free

Subject collections

 (92 articles)theoretical biology   �
 (240 articles)cognition   �

 
Articles on similar topics can be found in the following collections

Email alerting service  hereright-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in the box at the top

 http://rspb.royalsocietypublishing.org/subscriptions go to: Proc. R. Soc. BTo subscribe to 

 on April 23, 2014rspb.royalsocietypublishing.orgDownloaded from  on April 23, 2014rspb.royalsocietypublishing.orgDownloaded from 

http://rspb.royalsocietypublishing.org/content/suppl/2014/04/17/rspb.2013.3305.DC1.html 
http://rspb.royalsocietypublishing.org/content/281/1784/20133305.full.html#ref-list-1
http://rspb.royalsocietypublishing.org/cgi/collection/cognition
http://rspb.royalsocietypublishing.org/cgi/collection/theoretical_biology
http://rspb.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royprsb;281/1784/20133305&return_type=article&return_url=http://rspb.royalsocietypublishing.org/content/281/1784/20133305.full.pdf
http://rspb.royalsocietypublishing.org/subscriptions
http://rspb.royalsocietypublishing.org/
http://rspb.royalsocietypublishing.org/


 on April 23, 2014rspb.royalsocietypublishing.orgDownloaded from 
rspb.royalsocietypublishing.org
Research
Cite this article: Kao AB, Couzin ID. 2014

Decision accuracy in complex environments

is often maximized by small group sizes.

Proc. R. Soc. B 281: 20133305.

http://dx.doi.org/10.1098/rspb.2013.3305
Received: 18 December 2013

Accepted: 18 March 2014
Subject Areas:
behaviour, theoretical biology, cognition

Keywords:
decision-making, collective behaviour,

optimality, information correlation
Authors for correspondence:
Albert B. Kao

e-mail: albert.kao@gmail.com

Iain D. Couzin

e-mail: icouzin@princeton.edu
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rspb.2013.3305 or

via http://rspb.royalsocietypublishing.org.
& 2014 The Author(s) Published by the Royal Society. All rights reserved.
Decision accuracy in complex
environments is often maximized
by small group sizes

Albert B. Kao and Iain D. Couzin

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA

Individuals in groups, whether composed of humans or other animal

species, often make important decisions collectively, including avoiding pre-

dators, selecting a direction in which to migrate and electing political

leaders. Theoretical and empirical work suggests that collective decisions

can be more accurate than individual decisions, a phenomenon known as

the ‘wisdom of crowds’. In these previous studies, it has been assumed

that individuals make independent estimates based on a single environ-

mental cue. In the real world, however, most cues exhibit some spatial

and temporal correlation, and consequently, the sensory information that

near neighbours detect will also be, to some degree, correlated. Furthermore,

it may be rare for an environment to contain only a single informative cue,

with multiple cues being the norm. We demonstrate, using two simple

models, that taking this natural complexity into account considerably

alters the relationship between group size and decision-making accuracy.

In only a minority of environments do we observe the typical wisdom of

crowds phenomenon (whereby collective accuracy increases monotonically

with group size). When the wisdom of crowds is not observed, we find

that a finite, and often small, group size maximizes decision accuracy. We

reveal that, counterintuitively, it is the noise inherent in these small

groups that enhances their accuracy, allowing individuals in such groups

to avoid the detrimental effects of correlated information while exploiting

the benefits of collective decision-making. Our results demonstrate that the

conventional view of the wisdom of crowds may not be informative in com-

plex and realistic environments, and that being in small groups can

maximize decision accuracy across many contexts.
1. Introduction
Decision-making, such as regarding which food patch to exploit, which individ-

uals to court, or in which direction to migrate, is central to the lives of many

organisms and a major determinant of fitness [1–3]. Animals typically make

decisions under conditions of uncertainty [4] and must obtain relevant infor-

mation in order to improve decision accuracy [5]. Environmental cues

frequently covary with biologically meaningful features and consequently

often serve as a potent source of information [4]: an odour can predict the pres-

ence of food, or the rustling of leaves can predict the presence of a predator, etc.

A further reduction of uncertainty may be achieved by incorporating social cues

into the decision-making process [4,6–15]. It has been suggested that by pool-

ing imperfect estimations, groups may achieve increased decision accuracy, the

so-called wisdom of crowds [16–21].

In this view, individual errors in judgement tend to cancel out when

imperfect individual estimates are pooled into a consensus choice, leading to

a collective decision that is improved with an increasing number of estimates

[19]. The earliest theoretical work on this effect dates to 1785 when the Marquis

de Condorcet demonstrated that if individuals have a probability r . 0.5 of

correctly guessing which of two available options is better, and each guess is

statistically independent, then combining a collection of guesses into a
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consensus decision through simple majority rule will result in

a decision accuracy greater than r and which increases mono-

tonically with group size, reaching, asymptotically, perfect

accuracy for infinitely large groups [20,21].

Recent experiments in simplified laboratory environments

have demonstrated that the wisdom of crowds can improve

decision accuracy across a variety of contexts, including

avoiding a replica predator [22,23] and discriminating

between conspecific phenotypes [24], suggesting that this

may be an important driver favouring the evolution of social-

ity. Nonetheless, it is evident in nature that many organisms

make decisions alone, and that many social organisms live in

relatively small groups [25], seemingly failing to take advan-

tage of the informational benefits of large group size. It has

been assumed, previously, that this may be due to constraints

that limit group size, such as increased competition for

resources [25,26]. However, it is not known whether a bal-

ance between the costs and benefits of group-living is the

only cause of intermediate group sizes, or if such group

sizes can inherently be adaptive, in terms of maximizing

individual members’ information-processing capability.

Most natural environments in which animal groups live

and make decisions are complex [27], especially relative to

those typically studied in existing theory and experiments

on the wisdom of crowds. Although previous work has con-

sidered a single cue (such as a cryptic predator [22–23] and

visual differences among individuals [24]), many natural

environments are composed of a rich set of cues simul-

taneously spanning multiple sensory modalities [4,28–30].

These cues, as with other features of natural environments,

typically contain some degree of spatial [31,32] and temporal

[33] autocorrelation. In general, different cues will tend to

have different degrees of observational correlation, and dif-

fering reliability in predicting the correct option. In the

natural world, these could be cues from different sensory

modalities, or cues in a single modality that differ in their

degree of correlation (e.g. landmarks may be visible to all

individuals within a group and consequently the information

provided will be correlated among individuals, whereas

other visual cues may be perceived more locally, and will

thus provide less correlated information to members of the

group). Consequently, the sensory information that many

group-living organisms perceive is, to a greater or lesser

degree, correlated rather than being statistically independent.

Some theory has been developed to explore the consequences

of correlated information in voting [34–36] and among sen-

sory neurons [37] and has shown that because diversity of

opinion is critical to the wisdom of crowds [17], observational

correlation tends to lead to poorer collective decisions. None-

theless, the robustness of the wisdom of crowds effect in

complex environments is still not well understood.

Here, we explore the effect of environmental complexity and

information correlation on the ability of animal groups to achieve

collective wisdom. We consider collective decision-making in

two environments, in order to illustrate two kinds of observa-

tional correlation likely to be common in nature, as well as an

environment containing both of these general types of corre-

lations. For the sake of simplicity, we study the case of

individuals in a group deciding between two discrete options,

such as two potential food patches, although the models are

amenable to scenarios involving an arbitrary number of options.

Theoretical and empirical work has shown that the social

interaction rules adopted by many organisms effectively
integrate the opinions of the group, such that the resulting col-

lective decision often closely mirrors the majority opinion

[15,18,22–24,38,39]. Consequently, although they may lack the

capacity for numerosity (the ability to explicitly count or tally),

or to explicitly cast a ‘vote’, organisms such as schooling fish

do effectively perform majority consensus decision-making

through their employment of simple and local social interactions

[15,22–24,39]. Furthermore, the presence of individuals lacking

preferences has been shown to further promote majority voting

by such animal groups [39]. In other organisms, such as in some

primates, organisms are thought to use, in addition, signals such

as calls or gestures to convey their preference, thus also resulting

in a type of voting behaviour [18].

Based on these empirical results, our model of collective

decision-making in complex environments is as follows: we

assume that in a given decision bout, each group member

observes the cue(s) present in the environment and uses a

voting strategy to translate these observations into a discrete

vote for one of the two available options. These individual

votes are then aggregated, and the group makes a consensus

decision in favour of the majority preference (simple majority

rule). We calculate the probability that a group chooses the

correct option, for a given environment, voting strategy and

group size. With this model structure, we simplify the collec-

tive dynamics for clarity (but without sacrificing realism)

while highlighting the effect of the external environment on

the wisdom of crowds.
2. Results
(a) Collective decision-making in environments

with multiple environmental cues
In the first class of models, we consider multiple cues to be

simultaneously present in the environment but that may

differ in their degree of observational correlation and reliability.

We assume, initially, that individuals make decisions in an

environment containing just two cues and later we extend the

results to arbitrarily many cues.

In the two-cue model (figure 1a), we consider the scenario

where one cue has low observational correlation (i.e. indepen-

dently sampled by individuals) and indicates the correct

option with reliability rL, whereas the other cue has high obser-

vational correlation and has reliability rH (figure 1a), where the

reliability (the probability that it predicts the superior option)

can take any value between 0.5 and 1. Each individual’s

voting strategy is to choose the low correlation cue with prob-

ability p and the high correlation cue with probability 1 2 p
and to vote for the option indicated by that cue. Majority

consensus determines the collective decision [15,18,38,39].

Unlike collective decision-making within simpler environ-

ments [21,40], in this complex environment, we observe two

regimes of parameter space: for some values of rL, rH and p,

we observe what has previously been termed the ‘wisdom of

crowds’ effect (whereby collective accuracy increases monoto-

nically with group size and asymptotes at perfect accuracy for

infinitely large groups), whereas for other parameter values,

we do not (figure 1b). In order for the wisdom of crowds to

be guaranteed, the expected proportion of the group receiving

correct, low correlation information must exceed 1/2, hence the

wisdom of crowds is observed only if p . 1/(2rL). Whether or

not animal groups can achieve collective intelligence therefore

http://rspb.royalsocietypublishing.org/
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Figure 1. How an environment containing two cues affects the wisdom of crowds. (a) Diagram of the model scenario showing individuals in a group observing two
environmental cues: one cue (left) has low correlation, whereas the other (right) has high correlation. (b) There exist two regimes of parameter space, one in which
the wisdom of crowds is observed (grey), and another in which a finite optimal group size is observed (red). (c) The optimal group size across environmental and
behavioural space. (d ) The space of possible opinion states that a group can be in in a given decision trial, and the accuracy expected in that trial as a function of the
group state. In the upper region, the majority of the group uses correct, low correlation information, so the group is guaranteed to make a correct decision. In the
left region, the majority is not using correct, low correlation information, but there are sufficiently many individuals using the high correlation cue such that if that
cue provided correct information, then there would be a majority using correct information. The group’s accuracy is therefore rH, because it is contingent on the high
correlation cue. In the lower-right region, insufficiently many individuals use correct, low correlation information, and there are insufficiently many individuals using
the high correlation cue such that the group will not make a correct decision, even if the high correlation cue is correct. An infinitely large group deterministically
finds itself at the point (p, prL). (e) For finite-sized groups, the probability distribution within opinion space is described by a two-dimensional binomial distribution,
which allows for enhanced accuracy if the additional probability of being in the upper region exceeds that of the lower-right region. N ¼ 20, rL ¼ 0.55, p ¼ 0.75.
( f ) Some examples of how collective accuracy varies with group size in the region where a finite group size is optimal. Values used are shown as points in figure 1b,
with rH ¼ 0.5.
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depends on both the animals’ behaviour (the voting strategy, p)

and the properties of the environment (specifically the

reliability of the low correlation cue, rL).

If an animal group is in an environment where the wisdom

of crowds is not possible ( p , 1/(2rL)), then we find that very

large groups achieve a collective accuracy of just rH. This is

because when only a minority of individuals are using correct,

low correlation information, there are still sufficiently many

individuals using the high correlation cue such that if

that cue provides correct information, then a majority of

the group will still vote correctly. Under these conditions, the

group reaches the correct decision only if the high correlation

cue is correct. Consequently, in this regime, the group decision

is essentially dictated by the high correlation cue, and this cue
can control the group decision even when only a minority of

the group uses the cue, i.e. when 1/2 , p , 1/(2rL). This high-

lights the strong potential of highly correlated information to

undermine the wisdom of crowds.

(b) The role of noise and effective consensus
decision-making

In environments where the wisdom of crowds is not possible

( p , 1/(2rL)), we find that there exists an optimal, finite group

size that maximizes decision accuracy, and that this group size

tends to be moderately small, but greater than 1 (figure 1c).

To understand why this is the case we investigate the role of

noise (stochastic error) during collective decision-making.

http://rspb.royalsocietypublishing.org/
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Finite-sized groups are subjected to binomial noise along

two dimensions: one relating to how many individuals use

each cue (a function of the voting strategy p), and the other

relating to how many individuals, out of those who use the

low correlation cue, receive correct information (a function

of the reliability rL). We can succinctly describe the distri-

bution of opinions in the group with these two parameters

(figure 1d,e). Although very large groups are deterministi-

cally placed at a single point in this space (figure 1d ),

finite-size groups exhibit a probability distribution in opinion

space (figure 1e).

The consequence of such noise on collective accuracy

is dependent on the environment. When the wisdom of

crowds is possible ( p . 1/(2rL)), the noise is always detrimental

to collective accuracy because it increases the probability

that a group experiences lower accuracy regions of opinion

space, when compared with infinitely large groups. By contrast,

when the wisdom of crowds is not possible ( p , 1/(2rL)), noise

can have the converse effect, allowing the collective accuracy

of some group sizes to exceed that of infinitely large groups

(figure 1f). Because noise increases asymmetrically with

changes in group size (with respect to the geometry of the

space of opinion states), these group sizes are able to increase

their probability of experiencing high accuracy regions of

opinion space faster than the rate of increase of the probability

of experiencing low accuracy regions (figure 1e), thereby allow-

ing individuals in such groups to exceed the accuracy of those in

larger, or infinitely large, groups.
In this regime, the improvement in decision accuracy at the

optimal group size, when compared with infinitely large

groups (figure 2a) and to solitary individuals (figure 2b),

depends largely on the reliability rH of the high correlation

cue. When rH is small (�0.5), the optimal group size shows a

large improvement over infinitely large groups and only

a small improvement over solitary individuals. When rH is

large (�1), the reverse is true. The presence of noise in small

groups may therefore substantially improve individuals’ abil-

ity make decisions collectively (regarding, for example,

finding food or avoid predators) when compared with other

group sizes.

(c) Fraction of environments that allow for the wisdom
of crowds

In our analysis so far, we have assumed that an animal’s voting

strategy p can be an arbitrary value between 0 and 1 in any

environment. However, it is well known that animals typically

learn and tune their behaviour in response to the properties of

environmental cues [41,42]. Because there is no evidence that

animals can detect the observational correlation of a cue

among individuals (although to our knowledge, there have

been no direct tests of this), we may expect p to be a function

only of the reliability of the cues. There are three strategies

that animals may reasonably exhibit: they exclusively use the

more reliable cue (maximizing strategy) [43], they use a cue

proportionally to its reliability (matching strategy) [43], or

http://rspb.royalsocietypublishing.org/
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they choose each cue with equal probability (random strategy).

We calculate the fraction of parameter space (values of rL and

rH) in which the wisdom of crowds would be observed using

each of these strategies, and find the proportion to be 50%

for the maximizing strategy, 18% for the matching strategy,

whereas the wisdom of crowds is never observed for the

random strategy, compared with 31% of scenarios when

the environment and behaviour are not coupled (see electronic

supplementary material for details). Therefore, even when

individuals are capable of tuning their behaviour to the

environmental contingencies, they are still highly limited in

their ability to achieve the wisdom of crowds.

(d) Environments with arbitrarily many
environmental cues

We extend our analysis to include arbitrarily many envi-

ronmental cues. We suppose M cues, ML of which have

low observational correlation, and M – ML of which have high

observational correlation, and all cues have arbitrary reliabilities

between 0.5 and 1. We again consider the three possible voting

strategies previously described, plus the strategy where individ-

uals favour the option that the majority of the observed cues

indicate is correct (the majority strategy). Here, we find that

the emergence of the wisdom of crowds relates closely to the

fraction of the cues that have low correlation (ML/M) and is

again dependent on voting strategy used. For the maximizing

strategy, the probability is equal to ML/M; for the matching

strategy, it occurs only if ML/M . krlM/(2kr2lL); and for both

the random and majority strategies, it occurs only if ML/M .
1/(2krlL), where klL is the mean across the low correlation

cues, and klM is the mean across all of the cues (see electronic

supplementary material for details).
(e) Modelling correlated fluctuations in cue reliability
To investigate further the importance of observational corre-

lations in collective decision-making, we develop a second

model, in which we reduce the environment to one cue,

which for concreteness we imagine to be a dissolved odour

in water that indicates which of two patches contains food

(figure 3a). Here, the cue is independently sampled by

the group members, and each member has a probability r
of receiving correct information from the cue. However,

water is subjected to currents and turbulence, which can

globally affect group members’ probability of receiving cor-

rect information from the cue [44–46]. We consider that

with a probability g, the water current is such that the prob-

ability that each individual receives correct information

increases to r þ 1, whereas with probability 1 2 g, the prob-

ability decreases to r 2 1 (figure 3a). Individuals favour

the option that their observation of the cue indicates, and a

consensus decision is formed through simple majority rule,

as before.

We find that similar to the first model, the capacity for

individuals to benefit from the wisdom of crowds is depen-

dent on the environment (figure 3b,c). Here, the condition

for this phenomenon to emerge is 1 , r 2 1/2, which only

occurs in one-third of possible environments (figure 3b). In

all other environments, an infinitely large group attains an

http://rspb.royalsocietypublishing.org/
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accuracy of only g. Smaller groups again outperform larger

groups, and for similar reasoning as previously discussed:

as group size shrinks, noise increases asymmetrically, such

that the collective decision accuracy increases. In contrast to

the first model, however, the region in which moderately

sized groups are optimal is small, and generally either

single (solitary) individuals or infinitely large groups are

optimal (figure 3d ).

( f ) Combining the two forms of correlation
The two kinds of correlation described above could coexist sim-

ultaneously in a natural environment. Multiple cues may

abound, with different reliabilities and correlations, and these

reliabilities may be subjected to occasional, large-scale disturb-

ances owing to currents, turbulence or gusts. In a simple model

containing both kinds of correlations, we imagine two cues,

one with low correlation and one with high correlation.

With probability g, the reliability of the low correlation cue is

rL þ 1, and with probability 1 2 g, the reliability is rL2 1.

The reliability of the high correlation cue is rH. In this scenario,

the wisdom of crowds is guaranteed only if p . 1/(2(rL 2 1)).

The proportion of environments that satisfies this require-

ment is found by integrating the geometric regions

shown in figure 1b and figure 3b and is given by 8/3Ð 1
1=2

Ð rL�1=2
0 (1� 1/2(rL � 1))d1dr ¼ 0:076.
3. Conclusion
We have demonstrated that explicitly taking into account

environmental complexity, such as multiple cues, and the pres-

ence of observational correlation in the cues, substantially

alters our view of how collective intelligence is achieved by

groups. Under such conditions, which are likely to be the

norm, not the exception, in most natural environments [4,27],

we find that small, or intermediate-sized, groups typically out-

perform those that are large. It is shown that it is the noise

inherent in small groups that results in their enhanced perform-

ance by allowing individuals in small groups to ‘escape’ the

constraints of highly correlated information while retaining

some of the benefits of pooling information collectively.

Our results suggest that small or intermediate group

sizes, as are commonly observed in nature [25–26], may

maximize the informational benefits of sociality when indi-

viduals make decisions collectively. Consequently, it may

not be necessary to invoke a trade-off between the benefits

and costs of sociality to explain why some animals maintain

small group size. We propose that group-living organisms

may take advantage of the noise inherent in small groups,

enhancing decision accuracy in the particular environment

in which they live.

Conversely, the decisions of very large groups may be

highly accurate when the information used is independently

sampled, but they are particularly susceptible to the negative

effects of correlated information, even when only a minority

of the group uses such information. Some group-living organ-

isms do form very large groups, including some species of

flocking birds, swarming insects and herding ungulates.

Despite such groups appearing similar in structure and form,

there can often be greatly differing selection pressures that

underlie the formation of groups. For example, vast mobile

swarms of locusts are on a ‘forced march’ driven by limiting

essential nutrients [47] and cannibalistic interactions [47–49].
Aggregations are particularly common during seasonal

migration [50] for breeding purposes [51] and environmental

factors, such as limiting food or water availability [52] or

high predation risk [53], may all contribute to the formation

of groups.

While individuals can benefit from being in large groups

for certain problem-solving tasks (e.g. large groups can span

and sense long-range environmental gradients undetectable

by individuals [54]), group size may not always be the

relevant quantity when considering information processing

and decision-making. In some groups, despite their size,

only relatively few individuals contribute to decision-

making. For example, in hierarchical societies, a small

fraction of the group, based on dominance, age or experience,

may decide where and when to travel [55–57]. Furthermore,

evolutionary models suggest that if personal information, on

which decisions must be made, is costly to acquire, then

groups may consist of a small subset of individuals that

acquires environmental cues (producers) [58,59] and a

larger subset of ‘followers’ (scroungers) [60]. Nonetheless,

collective decision-making is not impeded by the presence

of uninformed individuals in the group; information can

be effectively transmitted without requiring signalling or

individual recognition [38–39], and uninformed individuals

may even speed up and increase the sensitivity of decision-

making [61]. Therefore, even when groups are large, the

number of individuals contributing to a group’s decision

may be relatively small, which may allow some large

groups to retain the accurate decision-making capabilities

we reveal here.

Correlation in opinions may be an understudied, but

critical, aspect of collective decision-making. It alters the

landscape of decision accuracy, such that collective wisdom

is maximized by small groups in most environments.

Our results suggest that small groups may constitute an

effective strategy, whereby collective wisdom is still har-

nessed but remains robust to highly correlated information.

Collective intelligence also has wide applicability in human

decision-making, including law-making bodies, prediction

markets and corporations. While there is growing evidence

that the wisdom of crowds leads to substantially improved

decision accuracy [16–20,62], it is still not well understood

how it operates in complex, real-world conditions. For

example, how social information is shared between group

members can affect the resulting decision accuracy [40] and

can often undermine the wisdom of crowds by improving

confidence in the collective decision without improving its

accuracy [63]. Here, we have shown that the external environ-

ment from which group members draw information can also

substantially affect the wisdom of crowds by introducing

correlations in group members’ opinions. Humans often

gather information from common, and correlated, sources

such as news networks and influential individuals, and

world events can have global effects on people’s opinions.

Quantifying these correlations and understanding their effect

on collective intelligence is likely to be crucial to understand

the evolution of sociality and to exploit effectively collective

intelligence to improve decisions in human endeavours.
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