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minute and 59 minute conditions and 
then compared this average to the 5 
minute condition; the impact of hub 
baiting on long-term retention was 
larger than in the 5 minute condition 
(t(7) = 2.80, p < 0.05). 

We propose that hub placement 
prompted memory retrieval because 
rats expected a memory test after 
hub placement. Our data suggest 
that memory retrieval shortly after 
studying promotes subsequent 
long-term retention. Importantly, the 
memory test occurred early in the 
retention interval, thereby leaving a 
substantial amount of time before 
the test (up to approximately an 
hour), during which it is unlikely 
that the rats continued to maintain 
an active representation of the 
retrieved memory; the rats were 
physically removed from the room 
containing the maze during these 
long delays. Importantly, the 
observed improvement in accuracy 
cannot be attributed to memory of 
the hub placement per se because 
such memory would not provide 
information about baited or unbaited 
arms. Moreover, it is unlikely that hub 
placement improved navigational 
accuracy by providing enhanced 
access to extra-maze cues [7] 
because the opaque hub restricted 
access to global room cues relative 
to placement in the cage near the 
maze. 

We outline three potential 
mechanisms by which memory 
retrieval may confer benefits on 
subsequent memory performance. 
Hub placement may have prompted: 
memory retrieval of study arms or 
a representation of to-be-visited 
arms [8]; activation of an association 
between the hub and the previously 
studied arms [9] (for example, the 
hub is a fragment of the baited 
configuration, which may activate 
an association to the baited arms); 
or reconsolidation of memory 
after retrieval [10]. Any proposed 
mechanism would need to operate 
on item-specific information given 
that a unique configuration of arms 
was used on each trial. We used 
item-specific information because 
it is standard for human memory 
experiments and it has potential for 
modeling retrieval practice using 
nonhumans.

Despite strong everyday intuitions 
that studying for a test is the optimal 
strategy to promote success, there is 

a large body of research with people 
to suggest that taking a test ultimately 
promotes better memory performance 
[2–6]. Our findings support the view 
that nonhumans may be used to 
model fundamental aspects of human 
memory. This study provides insight 
into the fundamental question of why 
we remember. Our results suggest that 
one function of memory retrieval in 
nonhumans is to ultimately promote 
future memory success. The benefits 
of practicing memory retrieval are 
apparently quite old in the evolutionary 
timescale, which suggests that the 
origins of practice-induced memory 
benefits predate language. 

Supplemental Information
Supplemental Information includes Supple-
mental Experimental Procedures and can be 
found with this article online at http://dx.doi.
org/10.1016/j.cub.2013.07.044.
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Social transmission of information 
is vital for many group-living 
animals, allowing coordination of 
motion and effective response to 
complex environments. Revealing 
the interaction networks underlying 
information flow within these groups 
is a central challenge [1]. Previous 
work has modeled interactions 
between individuals based directly 
on their relative spatial positions: 
each individual is considered to 
interact with all neighbors within a 
fixed distance (metric range [2]), a 
fixed number of nearest neighbors 
(topological range [3]), a ‘shell’ of 
near neighbors (Voronoi range [4]), 
or some combination (Figure 1A). 
However, conclusive evidence to 
support these assumptions is 
lacking. Here, we employ a novel 
approach that considers individual 
movement decisions to be based 
explicitly on the sensory information 
available to the organism. In other 
words, we consider that while spatial 
relations do inform interactions 
between individuals, they do so 
indirectly, through individuals’ 
detection of sensory cues. We 
reconstruct computationally the 
visual field of each individual 
throughout experiments designed to 
investigate information propagation 
within fish schools (golden shiners, 
Notemigonus crysoleucas). Explicitly 
considering visual sensing allows 
us to more accurately predict the 
propagation of behavioral change 
in these groups during leadership 
events. Furthermore, we find that 
structural properties of visual 
interaction networks differ markedly 
from those of metric and topological 
counterparts, suggesting that 
previous assumptions may not 
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Figure 1. The spread of information through fish schools.
(A) Different models for the neighbors with whom a given fish interacts, shown for one example 
image from our dataset. Metric: all individuals within a certain distance. Topological: a fixed 
number of nearest neighbors. Voronoi: those individuals sharing a boundary in a Voronoi tes-
sellation of the group. Visual: all individuals that occupy an angular area on the retina of the 
focal fish that is greater than a threshold value. (B) A wave of behavioral responses spreads 
through the group during leadership events. An image from the end of a leadership event is 
shown. Superimposed on this image, each filled circle marks the location of a single fish when 
it responded, and colors represent the time of that response. Black borders around circles de-
note informed (trained) fish. (C) Empirical support for different models of information transfer. 
Higher marginal likelihood indicates more support (note the log scale). Marginal likelihoods 
of each model (computed via numerical integration) represent the product of the likelihoods 
over all uninformed individuals and all trials. Plotted values are the mean of 10 runs, each us-
ing 10,000 random samples from parameter space. Standard deviations of these estimates 
are smaller than data markers. (D) Network efficiency (the speed with which information can 
flow through the network) vs. average degree (number of neighbors) for the different models 
of interaction networks. (E) Network transitivity (the extent to which individuals who share a 
neighbor are neighbors themselves) vs. average degree for the different interaction networks. 
Higher transitivity indicates a greater likelihood of one’s neighbors being mutually connected, 
and hence a greater level of redundant information available to each individual. Colors and 
marker shapes are as given in panel A. For each data point, network measurements represent 
mean values taken over 250 networks randomly sampled from our data (10 samples from each 
leadership event). Different parameterizations are generated by adjusting the interaction radi-
us, number of nearest neighbors, or visual threshold. Because of its inherently fixed interaction 
range, only one data point is shown for the Voronoi model. Shaded areas show the standard 
deviation along the first principal component of the error distribution. Non-filled markers in-
dicate the average degree associated with the best fit to the data. Full definitions of network 
measurements are given in Supplemental information.
appropriately reflect information flow 
in animal groups. 

Often, individuals with pertinent 
information may guide group motion, 
allowing all animals within a group to 
take advantage of information held 
by only a subset [5]. Such leadership 
may be crucial, particularly for 
foraging and predator detection 
[6]. In our experiments, we initiated 
leadership in fish schools by placing 
a known number of ‘informed’ fish 
(trained to move toward a stimulus) 
within a larger group of ‘uninformed’ 
(untrained) fish. By controlling 
when and where the stimulus was 
presented, we created repeatable 
‘leadership events’ whereby 
information transfer was essential 
for group motion towards the target. 
We tracked (at 30 frames per second) 
the body position and posture of 
every fish (in groups of 70) during 
25 leadership events. From this 
information, we reconstructed the 
trajectory and visual field of each fish 
over time (Supplemental information). 
We then used these sequences to 
test hypotheses about the nature 
of the interaction networks within 
groups. During a leadership event, 
fish exhibit a clear acceleration 
toward the target (Supplemental 
information), allowing us to define a 
discrete behavioral ‘response’ time 
for each individual. These responses 
propagate through the group in 
a wave (Figure 1B). Although the 
nature of these waves varies among 
trials (Supplemental information), in 
general they spread out spatially from 
the first individual to respond (LMM: 
p < 0.0001), suggesting a social 
contagion effect. Overall, informed 
individuals respond earlier than 
do uninformed (LMM: p < 0.0001), 
and occupy frontal positions in the 
group (permutation test: p < 0.001; 
Supplemental information, [6]). 

We compare different explanatory 
models for the spread of behavioral 
responses. Models have a common 
structure to ensure fair comparison. 
Each predicts the probability that 
each uninformed fish will respond at 
each point in time:

 (1)

where s depends on the assumptions 
of the model. For all social models, 
we assume that s depends on the 
fraction of an individual’s neighbors 
that have already responded, 
as supported by our analysis 
(Supplemental information). However, 
each social model specifies a 
different interaction range, based 
on metric, topological, Voronoi, 
or specifically visual assumptions 
(Figure 1A), allowing us to compare 
directly the support for these different 
interaction networks. Whereas 
different metric and topological 
ranges depend on distance, and 
number of neighbors, respectively, for 
visual ranges the structure depends 
on occlusion, as well as a ‘minimal 
visual threshold’ area subtended on 
the retina. We also compare these 
social models to nonsocial models 
(based on target distance or visibility) 
and to a null model assuming a 
constant response probability (see 
Supplemental Information for full 
model descriptions.)

Following the methodology of [7], 
we compare the validity of these 
different models by computing 
the marginal likelihood of the data 
conditioned on each model, with 
higher values indicating more 
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empirical support (see Supplemental 
information). Our results (Figure 1C) 
confirm that behavioral responses 
are socially contagious, and spread 
locally. A comparison of different 
interaction ranges indicates that 
both Voronoi and visual models 
outperform metric and topological 
models, with the visual model 
best explaining the data. Visual 
mediation of interactions is also 
consistent with the lack of evidence 
for hydrodynamic interactions found 
in this, and other small freshwater, 
species [8]. 

Through network analysis, we 
reveal the broader consequences of 
different interaction ranges. From 
our data, we generate directed, 
time-varying interaction networks, 
as specified by each model (Figure 
1A). Different parameterizations 
result from adjusting the interaction 
radius, number of nearest neighbors, 
or visual threshold. We compare 
these networks using three 
structural measurements relevant to 
information transmission: average 
degree (number of neighbors), 
network efficiency (potential 
speed of information transmission 
through the network), aurend 
network transitivity (how often 
individuals who share a neighbor 
are also neighbors themselves). Full 
definitions are given in Supplemental 
information. For the same average 
degree, visual networks show 
similar efficiency (Figure 1D), but 
substantially lower transitivity 
(Figure 1E) than their metric and 
topological counterparts. Transitivity, 
widely discussed in the networks 
literature, reflects the redundancy 
of information among neighbors, as 
neighbors connected to one another 
are more likely to provide the 
same information [9]. Based on the 
observed difference in transitivity, 
we would expect that more novel 
information is contributed per 
neighbor in the visual versus 
metric and topological networks. 
Voronoi models may more closely 
approximate visual ones, as their 
transitivity is similar (for a certain 
average degree; Figure 1E), and they 
are second only to visual models in 
empirical support (Figure 1C).

Our results demonstrate that 
metric and topological networks, 
commonly assumed to represent 
interactions in animal groups [2,3], 
do not reflect the visual information 
employed when making movement 
decisions, and may overestimate 
the local redundancy of information 
in groups. Explicitly considering the 
sensory basis of group decision-
making [10] represents a new 
perspective that better integrates 
our understanding of individual and 
collective behavior.

Supplemental Information
Supplemental information including 
experimental procedures, two figures and 
two supplemental movies can be found 
with this article online at http://dx.doi.
org/10.1016/j.cub.2013.07.059
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