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Groups of organisms, from bacteria to fish schools to human societies,
depend on their ability to make accurate decisions in an uncertain world.
Most models of collective decision-making assume that groups reach a
consensus during a decision-making bout, often through simple majority
rule. In many natural and sociological systems, however, groups may fail
to reach consensus, resulting in stalemates. Here, we build on opinion
dynamics and collective wisdom models to examine how stalemates may
affect the wisdom of crowds. For simple environments, where individuals
have access to independent sources of information, we find that stalemates
improve collective accuracy by selectively filtering out incorrect decisions
(an effect we call stalemate filtering). In complex environments, where
individuals have access to both shared and independent information, this
effect is even more pronounced, restoring the wisdom of crowds in regions
of parameter space where large groups perform poorly when making
decisions using majority rule. We identify network properties that tune the
system between consensus and accuracy, providing mechanisms by which
animals, or evolution, could dynamically adjust the collective decision-
making process in response to the reward structure of the possible outcomes.
Overall, these results highlight the adaptive potential of stalemate filtering for
improving the decision-making abilities of group-living animals.
1. Introduction
Collective decision-making is an essential feature for organisms across a
wide range of taxa, from bacteria to fish to humans [1]. For some species,
individuals accrue benefits from group living for reasons unrelated to the
decision-making process and make consensus decisions simply to maintain
cohesiveness [2,3]. Beyond cohesion, many other species make decisions collec-
tively in ways that improve accuracy and the fitness of the animals within the
group [4,5].

The potential for decision accuracy to increasewith group size is often referred
to as the ‘wisdom of crowds’, ‘collective wisdom’ or ‘collective intelligence’. Tra-
ditional models assume that the increase in accuracy occurs because individuals
contribute different, and somewhat uncorrelated, pieces of information relevant
to the decision. Because the group as a whole has access to a greater amount of
information than any single individual, the resulting collective decision has the
potential to be more accurate than is possible for an individual. A wide variety
of theoretical models, including the well-known Condorcet jury theorem [6], but
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also much recent work loosening some of the theorem’s
assumptions (e.g. [7–9]), and an increasing number of empirical
studies (e.g. [10,11]), have indeed demonstrated this effect for
different contexts and species.

Models of collective wisdom often explicitly assume
decision-making processes inherently lead to consensus, typi-
cally as a result of a voting process such as majority rule,
quorums [9,12,13], or an averaging of individual opinions
[14]. Realistic decision-making in animal groups, however,
is not exogenously aggregated and instead relies on endo-
genous processes of typically local social interactions. For
example, in fish schools and bird flocks, the trajectories of
individual animals are influenced by both the movements
of their near neighbours, as well as their own preferences,
and these myriad momentary interactions may result in
coherent collective movement towards a single direction of
motion [15–18]. While these dynamics may at times approxi-
mate majority rule [12,13,19], the mapping between the
microscopic social interactions and macroscopic collective
decisions remains an active area of research. In addition to
the social interactions of group-living animals such as fish
and birds, the endogenous decision-making capability of
other collective systems have also been modelled, such as
neural systems [20] and insect colonies [21,22], where differ-
ent mechanisms may lead to effective, and sometimes
optimal, collective decision-making.

Crucially, emergent decision-making processes through
social interactions may not guarantee that a group reaches a
consensus within a reasonable time period, or at all. There-
fore indecision or a stalemate can be considered an effective
third option whenever a group is faced with a binary decision
problem. Whether this option is in fact viable will then
depend on the relative cost of a stalemate compared with a
wrong decision, which will be strongly context dependent.

For example, many small schooling fish are prey to larger
predators and prefer to hide in grasses or shelters for safety
[23]. Before leaving the shelter they will have to decide
where to travel (e.g. to one out of two or more possible
food sources). These decisions may depend on individually
sensed information about foraging opportunities and the
likelihood of encountering a predator. Failure to reach a con-
sensus about the destination of travel, and consequently
staying in the shelter, may be a relatively low-cost option
(compared with being eaten). For simplicity, we will
assume initially that costs of stalemates are negligible
and focus on how they affect collective accuracy (i.e. the
probability that the group selects the better of the two non-
stalemate options). Later on, we will discuss the role of stale-
mate costs with a detailed discussion in the electronic
supplementary material.

Furthermore, recent work has suggested that the specific
informational environment in which collective decisions are
made can have major effects on the resulting decision accu-
racy. In particular, a combination of both uncorrelated and
correlated information can interact, resulting in low decision
accuracy for large group sizes, with decision accuracy instead
being maximized by intermediate-sized groups [19,24,25].
This stands in contrast to the predictions of many wisdom
of crowds models, including the Condorcet jury theorem,
which predict a monotonic increase in collective accuracy as
group size increases.

The presence of both uncorrelated and correlated infor-
mation may frequently occur in nature due to differences in
the degree of spatial and temporal correlation of different
environmental cues. For example, loud auditory cues may
be highly correlated across individuals in a group, while
visual cues may be more localized and therefore less corre-
lated across individuals due to the limited visual field of
each animal, and occlusion of one’s field of view by the
bodies of neighbours. Another way in which uncorrelated
and correlated information can be present simultaneously is
from social copying within a group. A theoretical model
has demonstrated that if individuals begin with independent
(uncorrelated) information, but make individual decisions by
incorporating the previous decisions of other group mates,
then a similar phenomenon of an optimal intermediate
group size, and poor decision accuracy for large groups,
can also emerge [26].

Opinion dynamics models provide a flexible method to
examine the mapping between social interactions, environ-
mental cues, collective decisions, and decision accuracy
[27]. In such models, each individual begins with some initial
opinion (e.g. determined by the environmental cues that the
individual observes), and then the opinions may change in
time depending on the social network structure and the
social interaction rules that individuals follow. These
dynamics may lead to consensus, whereby all individuals
have the same opinion, or may fail to reach consensus, by
arriving at some other state where the system indefinitely
retains a mixture of opinions.

In order to better understand how animals may make
collective decisions in naturalistic conditions, here we exam-
ine the effect of opinion dynamics on collective decisions in
both simple environments (i.e. individuals independently
sample a single environmental cue, identical to the context
described by the Condorcet jury theorem) and complex
environments (i.e. individuals can sample from both a corre-
lated and an uncorrelated environmental cue). While the
decision scenarios that we highlight here (particularly the
Condorcet jury theorem) are overly simplistic compared
with the actual situations that many real animal groups
face, they provide a useful starting point to examine how
opinion dynamics interact with collective wisdom. As we
show, even such relatively simple environments are sufficient
in highlighting interesting phenomena, particularly that
opinion dynamics can substantially alter the outcome of col-
lective decisions, and in most cases, improve collective
accuracy compared with simple majority rule.

2. Results
(a) Stalemates can improve wisdom of crowds in simple

and complex environments
If a group, faced with the decision between two options (e.g.
two potential food patches, fleeing directions, locations to
rest) fails to come to a consensus, it effectively chooses a
third option: to do nothing. Throughout this work, we will
assume that groups are faced with binary decisions (i.e.
choices between two options, where one option is ‘correct’
and the other is ‘incorrect’). Because here we assume that the
cost of stalemates is negligible, we do not consider their contri-
bution to a group’s accuracy. Decision accuracy is then
calculated as the number of trials where a correct consensus
decision was made divided by the total number of trials that
reached consensus.
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Figure 1. Consensus decision making and stalemate filtering in simple and complex environments. (a) In simple environments with low cue reliability, groups which
reach consensus through opinion dynamics (green) show higher collective accuracy than groups which use simple majority vote (grey). Both decision making pro-
cedures show an increase in accuracy with group size (i.e. wisdom of crowds). (b) When majority voting is employed in complex environments the wisdom of crowds
can break down such that an increase in group size can lead to a decrease in collective accuracy (grey). Using opinion dynamics for consensus formation can remedy
this effect and restore the wisdom of crowds (green). (c) Regions in the rI × p parameter space where groups of N = 51 individuals using majority vote perform
better ( purple) or worse (orange) than a solitary individual. rC is set to 0.55. (d ) When groups use opinion dynamics to reach consensus the region in parameter
space where groups outperform individuals increases. All parameters are the same as in (c). (e) Example of a single updating step in a highly clustered (WS) network
(β = 0.1). The focal node (light blue) observes the opinions of k = 5 immediate neighbours and will change its opinion from blue to red. ( f ) A minimal example of
a network that has reached a stalemate. Because each node has one blue and one red neighbour, none of the nodes will change their opinion. (g) Example of the
formation of initial opinions in a complex environment. With probability 1− p, an individual attends to the correlated source (red box), and all individuals that
follow this source will receive the same information (here red). All other agents sample independently observed information which is correct with probability rI.
(h) Probability that a group reaches a consensus for the correct (blue) or incorrect (red) option as a function of the initial fraction of individuals voting for the correct
option for small (N = 11) or intermediate (N = 51) group sizes. The grey histograms illustrate the distribution of initial votes for a cue with reliability r = 0.55.
As group size increases, the initial vote distribution needs to be increasingly biased in order for a consensus to be reached (i.e. the inflection point of the red and
blue curves shift to more extreme values). Assuming that the cue is informative (i.e. r > 0.5), the set of initial opinions will tend to have a positive bias, and the
opinion dynamics will tend to reach consensus towards the correct option. (i) In complex environments, the distribution of initial votes is bimodal. The centres of the
modes correspond to the conditional probability of an individual being correct, given that the correlated cue is correct (right mode) or incorrect (left mode). Black
lines illustrate the effect of the three model parameters on the shape of the distribution: rI determines the distance from 0, rC determines the relative heights of the
two modes, and p governs the distance between the modes. Red and blue lines depict the probability of a correct or incorrect consensus as in (h). Consensus is
unlikely when the correlated cue is incorrect (left mode). (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20201802

3

In our model, individuals in a group are connected to one
another into a social network, represented by a graph where
the nodes denote the individuals and connections between
individuals are shown as edges. For the main part of this
work we will focus on Watts–Strogatz (WS) networks, a
well-studied family of networks that spans the range from
highly clustered to random networks [28,29]. We were also
able to reproduce our results on scale-free networks and real
biological networks formed by fish schools (for a more
detailed discussion see electronic supplementary material,
sections S3–S4. WS networks are particularly convenient
because they are completely determined by only three par-
ameters: the group size (N), the node degree (i.e. the number
of neighbours that an individual is connected to, k) and the
rewiring probability (β). The rewiring probability specifies
the probability, when constructing the network, that a node
is connected to a randomly selected node instead of a spatially
close node, thus controlling the extent to which the network is
highly clustered (β = 0) or random (β = 1). Once a network has
been generated, it remains static for the duration of the
decision-making process. We examine groups ranging in size
from N = 3 to 200, and, for simplicity, initially fix the number
of neighbours to k = 5 (and a fully connected network if
N < k + 1) for each individual (which approximates the
number of neighbours that animals tend to pay attention to
when making collective decisions [30]) and the rewiring prob-
ability to β = 0.2. However, we later explicitly examine the role
that k and β play in affecting collective accuracy, as well as our
model’s extensibility to other types of graphs.

Next, the social interaction rules must be specified, which
govern how individuals change their opinion due to the
opinions of others. To approximate the social interactions
among real animals, we assumed an asynchronous updating
policy where at each time step, a random focal individual is
selected, and that individual changes its opinion to the
majority opinion of its neighbours (figure 1e; in the case of a
tie among the neighbours, the individual’s opinion is left
unchanged, figure 1f ) [31,32]. Such ‘threshold’ or ‘majority’
votermodels dynamics are not guaranteed to reach consensus;
instead, the network may become ‘stuck’ in an intermediate
state or oscillate between intermediate states (a detailed dis-
cussion of the convergence behaviour of the threshold model
can be found in [33], and a minimal example of a stuck net-
work is shown in figure 1f ). In order to detect whether a
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given network has reached a stalemate we probe the simu-
lation every n update steps and check if any node still holds
an opinion different from the majority of its neighbours (i.e
would switch to the opposite opinion when selected for
updating). If this is not the case the network has either come
to consensus or reached a stalemate and the trial is over. The
value of n is determined as a function of group size, for
more details see electronic supplementarymaterial, section S1.

To set the initial opinions of each individual (pre-inter-
action) we distinguish between informationally simple and
informationally complex environments. In simple environ-
ments, we assume, as in the Condorcet jury theorem, that
each individual has access to an independently sampled
environmental cue. As a result, the initial opinions are
independent of each other, and each has a probability r of
indicating the correct option, called the cue’s ‘reliability’. We
assume that r > 0.5 (i.e. that the cue is positively informative,
otherwise individuals could simply reverse their interpret-
ation of the cue to generate an informative cue). As is well-
known from the Condorcet jury theorem and related work, if
r > 0.5, and a group makes decisions using simple majority
rule then the probability that the group makes a correct
decision increases monotonically with group size and
asymptotes at perfect accuracy (the so-called ‘wisdom of
crowds’) [14].

In informationally complex (and more naturalistic)
environments, we follow previous studies [19,24,25] in assum-
ing that there are two cues in the environment. One cue (the
uncorrelated cue) is independently sampled by each individ-
ual in the group, and has reliability rI > 0.5. The other cue
has reliability rC > 0.5 and is correlated across all of the individ-
uals in the group, such that all of the individuals observe the
same information from that cue in any given trial. Whether
an individual attends to the independent or the correlated
cue, is governed by the ‘voting strategy’ p. With probability
p an individual’s initial vote is a sample of the independent
cue and with probability 1− p the vote is the current value
of the correlated cue.

Figure 1 provides an overview of the effects of consensus
decision making on collective accuracy. First of all, the
examples in figure 1a,b show that in both simple and complex
environments consensus decision making via opinion
dynamics leads to a substantial increase in collective accuracy
compared with using simple majority rule, where initial votes
are averaged without any opinion exchange. The effect is par-
ticularly strong for complex environments. Previous work
[24] has shown that if p < 1/(2rI) (as is the case in figure
1b), groups using simple majority will not display wisdom
of crowds, but rather achieve maximum accuracy at finite
group sizes. Very large groups will asymptote at an accuracy
of just rC, since in this region of parameter space the corre-
lated cue tends to dominate the collective decision. When
opinion dynamics are used in this region of parameter
space, we find that the wisdom of crowds can be restored,
and the dominance of the correlated cue negated, with collec-
tive accuracy again increasing monotonically with group size
and asymptoting at perfect accuracy.

To illustrate the effect of consensus decisions in complex
environments more broadly, we performed a parameter
scan across the entire rI × p plane, while keeping the reliability
of the correlated cue fixed at rC = 0.55 (figure 1c,d ). The two
panels show the relative collective accuracy of a group of
size N = 51 compared with the accuracy of a solitary
individual. We find that the region in parameter space
where groups perform better than solitary decision makers
is larger when opinion dynamics (d ) are used than when
majority rule is employed (c).

Figure 1h,i illustrates the mechanism underlying the above
observations: the probability of a correct (incorrect) consensus
decision, as indicated by the blue (red) lines, increases nonli-
nearly with the proportion of correct (incorrect) initial
opinions (the probabilities of correct and incorrect consensus
do not necessarily sum to one because of the non-zero prob-
ability of stalemates). In particular, when the proportion of
initial correct opinions is ≈ 0.5 groups, especially large ones,
are highly unlikely to reach consensus. Consensus reliably
occurs only when the initial opinions are highly biased.

This explains the ability of stalemates to act as a filter
to improve collective decisions (hence the term stalemate
filtering). In simple environments the probability that a certain
proportion of initial opinions is correct, follows a binomial dis-
tribution with mean r (figure 1h, grey histograms). Assuming
a positively informative cue (r > 0.5), strong bias and thus con-
sensus is more likely to occur for the correct option. Stalemates
therefore indirectly reject scenarioswhere themajority opinion
is wrong, and boost the probability of correct decisions. If r <
0.5, the scenario would, of course, be reversed, i.e stalemates
would then filter out trials where there is an initial majority
for the correct option. But in this case individuals could just
reverse the interpretation of the cue as discussed above.

In complex environments, we observe a bimodal distri-
bution of initial opinions, one mode resulting from cases
where the correlated cue is correct, and the other mode result-
ing from cases where the correlated cue is incorrect (figure 1i,
grey histograms). We can demonstrate that the initial
opinions are, on average, less biased when the correlated
cue is incorrect, compared with when the correlated cue is
correct: the left mode is closer to 0.5 than the right mode if:
( prI− 0.5)2 < ((prI + (1− p))− 0.5)2. This inequality holds if
rI > 0.5, which is what we assume in our model.

Because of this, stalemates aremore likely to occurwhen the
correlated cue is incorrect, while consensus is more likely to
occur when the correlated cue is correct. Therefore, stalemates
effectively reject the correlated cue when it is incorrect, which
serves to break the dominance of the correlated cue and restore
the wisdom of crowds in complex environments. Notably, as
presented in electronic supplementary material, section S5,
we demonstrate that stalemate filtering can further improve col-
lective decision accuracy even if groups employ an optimal
voting strategy p as introduced in [19].

(b) Spatial clustering and sparseness improves the
filtering of inaccurate decisions

In general, we find that the higher the probability of a stalemate,
the more accurate the collective decision if consensus is reached,
across all parameter space, in both simple and complex environ-
ments. Therefore, to understand how different properties of the
network affect collective accuracy, we need only to examine how
these properties affect the probability of stalemates.

We examine the role of four network properties on the
probability of stalemates: the group size (N), the rewiring
probability (β), the node degree k (here expressed as the nor-
malized degree, k/N), and the randomness of the distribution
of initial opinions in the network (where a value of 0 indi-
cates that like opinions are maximally clustered in the
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network, and a value of 1 indicates that initial opinions are
randomly distributed in the network). We find that the prob-
ability of stalemates tends to increase as group size increases,
as the interaction network becomes more clustered, as the
number of neighbours decreases, and as the initial opinions
are increasingly clustered (figure 2).

Those networks where stalemates achieve the strongest fil-
tering effects are those that are large, highly clustered (with
respect tonetwork structure anddistributionof initial opinions),
and sparse. Such social structures may in fact be common in
nature,where visual occlusion [34,35] orothermechanismsgen-
erate clustering in animal groups [25]. Furthermore, existing
empirical evidence suggests that, formanysocial animal species,
individuals pay attention to their closest 1–7 nearest neighbours
[17,18,30,36], resulting in relatively sparse social networks.

In addition to studying the role of structural parameters in
WS graphs we also investigated the effect of global properties
of the interaction dynamics, namely decision time and
other types of graphs (see electronic supplementary material,
sections S2–S4). In particular, we found that if decision time
is limited (i.e. the decision process is terminated after a fixed
number of updating steps), collective accuracy increases. This
ties into the previous findings in that limiting the decision
time will make consensus harder to achieve and thus only
initially biased groups (whichwill generally be biased towards
the correct option) are able to reach a decision quickly.

Also the type of network connecting the individuals
affects the consensus probability and thus the collective accu-
racy. In scale-free networks, such as those generated with the
Barabàsi–Albert model, groups are highly likely to reach con-
sensus (except in cases of extreme sparseness) and thus
benefit little from stalemate filtering.

We also tested our findings in biological networks, inferred
from position data of schooling fish, before and after the appli-
cation of Schreckstoff, a natural alarm substance that increases
school cohesion leading to an increased normalized degree.
Here we could confirm that networks with lower normalized
degree were more likely to end up in a stalemate but also
showed the highest collective accuracy at consensus. This
might indicate that an increase in cohesion as a response to
external threats might not only serve physical protection but
also facilitate fast consensus decisions in situationswhere inde-
cision might be fatal. For more details on these results, refer to
the electronic supplementary material, section S4.

These findings have twomain consequences. Firstly, know-
ing the network structure and the specific decision context, it is
possible to predict the likelihood that a group reaches consen-
sus through opinion dynamics. Secondly, individuals in the
group may modify the network structure through changes in
their social interaction behaviour in order to optimize the
trade-off between consensus probability and decision accuracy.
(c) Detecting and breaking stalemates
So far we have shown that in settings where decision processes
are likely to end in a stalemate, whenever a consensus is
reached it is likely to be a consensus for the correct option. It
is, however, not obvious how the group members would be
able to determine whether consensus or a stalemate has been
reached on a global level. For example, individuals within a
group might believe that full consensus was achieved and
act accordingly, although a certain (small) fraction of individ-
uals remains unconvinced of the majority opinion. We
therefore tested the robustness of our findings with respect
to the potential misjudgement of the global decision state. In
figure 3, we lower the effective consensus threshold from q =
1 to q∈ {0.95, 0.9, 0.8}. Figure 3a,b shows that the general mech-
anism of stalemate filtering is robust to such a change.
Although the achieved accuracy boost is lower than for full
consensus, collective accuracy still increases with group size
and in all cases lies considerably above the values achieved
with simple majority voting.

While stalemates indirectly help to improve collective
accuracy by filtering, groups can only reap these benefits
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once a decision for one of the options is reached. This means,
groups must generally aim to break the stalemate. One strat-
egy would be to change the relevant network parameters,
but while this does increase the consensus probability it
would simultaneously diminish the benefits of stalemate filter-
ing. Another, more plausible strategy would be for a group to
interpret the inability to reach consensus as an indication that
the initial information was insufficient, leading individuals to
seek out more external information. This resampling pro-
cedure could either be performed on a global or a local scale.

Local resamplingmeans that if an individual observes a sta-
lemate among its neighbours (which does not generally imply a
global stalemate) this individual will reach out for new infor-
mation from the environment. This new information is drawn
from the original distribution (i.e. keeping p and rC fixed and
using the same value of the correlated cue). Figure 3c shows
howmany local redraws per individual are needed (on average)
to resolve a stalemate.Global resamplingmeans that if thewhole
groupgets stuck in a stalemate every individualwill redrawnew
information using the same distribution as initially. This is
equivalent running a new trial. Figure 3d shows (for different
group sizes) the average number of full redraws needed until
consensus reached as a function of the normalized degree
(k/N). If the probability of stalemates is high (e.g. in the case of
large groups or sparsely connected networks) groups will
need more redraws on average. However, in most cases two or
less redraws are enough to turn a stalemate into consensus.
3. Discussion
Our results highlight the importance of considering social
decision-making dynamics that do not impose consensus
and cannot be summarized simply as a form of ‘majority
rule’. In relaxing this assumption, we observe that such
dynamics can often result in a stalemate, whereby the group
is unable to reach a consensus. In our model, stalemates tend
to filter outcomes where the majority decision would be incor-
rect, both in simple and complex environments, resulting in an
improvement in collective accuracy.

Individual animals in a group may, in principle, be able to
titrate the frequency of stalemates by changing the proportion
of long-distance connections, or the number of neighbours to
which they’re attending. In principle, such changes to network
structure can be achieved by evenminor changes to individual
behavioural rules. For example, fish schools and other social
animal groups have long been known to move closer together
in response to increased predation risk. A dominant early
explanation for this tendency was that the close proximity
resulted from competition for low-risk places within the
group [2]. More recent work has demonstrated, however,
that moving closer alters the network of social interactions in
a way that increases collective responsiveness [37–39]. Our
analysis of networks of real fish schools demonstrated that
the experimentally observed increase in cohesion as a response
to a higher perceived risk results in an increased likelihood of
consensus, but decreased decision accuracy (see electronic
supplementary material, section S4). This appears to be a
reasonable collective response in the given experimental con-
text of a fish school in danger without any shelter [37],
where any decision (e.g. fleeing to the left or the right) might
be preferable to doing nothing.

This last point ties into a more profound question of the
nature of decision problems. While many existing models
(the present work included) focus mainly on decision accuracy
(i.e. ask whether a given choice is right or wrong), a growing
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body of literature emphasizes the value of the choices (e.g.
quality of nesting sites or food patches) as the main driving
factor of decision making [40]. Of particular interest, empirical
evidence has shown that humans and other primates decide
more quickly when shown two equally high-quality options
compared with two equally low-quality options [41,42], with
theoretical models replicating the ‘value-sensitive hypothesis’
[22,42]. Our results suggest that animals in groups could
additionally adjust the structure of their social network in
order to titrate between speed and accuracy of decision
making. While a full analysis of our model in terms of value-
based decision problems would go beyond the scope of the
presentwork,we analysed aminimal reward framework, vary-
ing the cost of stalemales (electronic supplementary material,
section S6). We find that a non-zero frequency of stalemates
can be profitable even when there is a cost to stalemates.
While these results are still preliminary, they indicate an inter-
esting connection to value and reward-based models which
future research should investigate further. For animal groups,
using stalemates to filter out incorrect decisionswould improve
the fitness of the individuals in the group if the cost of indeci-
sion is low, relative to the cost of an incorrect decision, but not
necessarily zero. This is likely to be the case across a broad
range of behaviourally and ecologically relevant contexts. Stay-
ing put may be preferable to misjudging the presence of a
predator, getting lost, or moving to a lower-quality foraging
patch. In particular, stalemates can cause a group to gather
more information before making a decision. This can allow a
group to avoid costly mistakes and boost collective accuracy,
and occasional stalemates may be evolutionarily favoured if
the cost of indecision is relatively low to individuals in the
group. However, for other species or contexts, the cost of inde-
cision is not low. For example, if a predator is attacking the
group, when a food patch becomes completely depleted, or
when a shelter becomes uninhabitable, indecision may be
costly, and making even a wrong decision may be preferable
to a stalemate. Therefore, the particular cost-reward structure
of the options available to an animal group may either incenti-
vize, or deincentivize, groups to employ stalemates as part of
their decision-making process. We note that there may be mul-
tiple mechanisms by which groups could create deadlocks in
the decision-making process [22].

Our model may also be extended to investigate the effect of
opinion dynamics, and stalemates, in other contexts. For
example, there may be variation in the estimation ability
among the individuals in a group, whether due to different
prior experiences or abilities, or due to different perceptual abil-
ities as a function of an individual’s physical positionwithin the
group. Model extensions could examine whether more knowl-
edgeable individuals could position themselves within the
network structure to more strongly influence the collective
decision [43], and more generally, how network structure [44]
orsocial information sharing[45,46] canaffect collectivewisdom.

In summary, opinion dynamics within social groups can
strongly affect the quality of collective decisions, and generat-
ing a quantitative mapping between the microscopic
interactions between individuals and the resulting collective
decision is crucial to an understanding of decision making
for many animals groups and other collective systems [47].
In particular, the possibility of stalemates as an outcome of
such dynamics is an understudied but potentially functionally
important feature of collective decisions. By titrating the rate of
stalemates, animals in groups may access an additional inde-
pendent mechanism that they may exploit to improve the
accuracy of collective decisions.
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